Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug 28;32(4):e00031-19.
doi: 10.1128/CMR.00031-19. Print 2019 Sep 18.

Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections

Affiliations
Review

Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections

Juan P Horcajada et al. Clin Microbiol Rev. .

Abstract

In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.

Keywords: Pseudomonas aeruginosa.

PubMed Disclaimer

Figures

FIG 1
FIG 1
World distribution (A) and European distribution (B) of ST235, ST111, and ST175 based on published data. (Reproduced from reference with permission from Elsevier.)

Similar articles

Cited by

References

    1. Poole K. 2011. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65. doi:10.3389/fmicb.2011.00065. - DOI - PMC - PubMed
    1. Breidenstein EBM, de la Fuente-Núñez C, Hancock R. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi:10.1016/j.tim.2011.04.005. - DOI - PubMed
    1. Oliver A, Mulet X, López-Causapé C, Juan C. 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 21–22:41–59. doi:10.1016/j.drup.2015.08.002. - DOI - PubMed
    1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Aboderin AO, Al-Abri SS, Awang Jalil N, Benzonana N, Bhattacharya S, Brink AJ, Burkert FR, Cars O, Cornaglia G, Dyar OJ, Friedrich AW, Gales AC, Gandra S, Giske CG, Goff DA, Goossens H, Gottlieb T, Guzman Blanco M, Hryniewicz W, Kattula D, Jinks T, Kanj SS, Kerr L, Kieny M-P, Kim YS, Kozlov RS, Labarca J, Laxminarayan R, Leder K, Leibovici L, Levy-Hara G, Littman J, Malhotra-Kumar S, Manchanda V, Moja L, Ndoye B, Pan A, Paterson DL, Paul M, Qiu H, Ramon-Pardo P, Rodríguez-Baño J, Sanguinetti M, Sengupta S, Sharland M, Si-Mehand M, Silver LL, Song W, Steinbakk M, Thomsen J, Thwaites GE, van der Meer JW, Van Kinh N, Vega S, Villegas MV, Wechsler-Fördös A, Wertheim HFL, Wesangula E, Woodford N, Yilmaz FO, Zorzet A, WHO Pathogens Priority List Working Group. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. doi:10.1016/S1473-3099(17)30753-3. - DOI - PubMed
    1. Pena C, Cabot G, Gomez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodriguez-Bano J, Rodriguez-Lopez F, Tubau F, Martinez-Martinez L, Oliver A, Gurgui M, Sorde R, Larrosa N, Martin C, Fontanals D, de Cueto M, Navarro MD, Torre-Cisneros J, Casal M, Lara R, Natera C, Rivero A, Peña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodríguez-Baño J, Rodríguez-López F, Tubau F, Martínez-Martínez L, Oliver A, Spanish Network for Research in Infectious Diseases (REIPI). 2015. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 60:539–548. doi:10.1093/cid/ciu866. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources