Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 28;114(5):40.
doi: 10.1007/s00395-019-0748-8.

Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts

Affiliations

Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts

Jingyi Xue et al. Basic Res Cardiol. .

Abstract

Connexin 43 (Cx43)-associated gap junctions form electrical and mechanical conduits between adjacent ventricular cardiomyocytes, ensuring coordinate electrical excitation and synchronic contraction for each heartbeat. Cx43 dephosphorylation is a characteristic of ischemia, arrhythmia, and a failing and aging myocardium, but the exact phosphosite(s) triggering myocardial apoptosis and electrical disturbance and its underlying mechanisms are unclear. We previously found that Cx43-serine 282 phosphorylation (pS282) can regulate cardiomyocyte survival and electrical stability. Here, we investigated the hypothesis that S282 dephosphorylation occurs in and contributes to ischemia/reperfusion (I/R)-induced cardiac injury. We found enhanced Cx43-pS262 and Cx43-pS368 but decreased Cx43-pS282 in rat hearts subjected to I/R (30 min/2 h). I/R rats had ventricular arrhythmias and myocardial apoptosis with activation of the p38 mitogen-activated protein kinase (p38)/factor-associated suicide (Fas)/Fas-associating protein with a novel death domain (FADD) pathway. Similarly, S282 dephosphorylation, abnormal Ca2+ transients, cell apoptosis and p38/Fas/FADD activation also occurred in neonatal rat ventricular myocytes exposed to anoxia/reoxygenation (12/6 h). To confirm the causative role of S282 dephosphorylation in cardiac injury, rat hearts were intramyocardially injected with a virus carrying the S282 mutant substituted with alanine (S282A), thus causing arrhythmias and reducing cardiac output and myocardial apoptosis with p38/Fas/FADD pathway activation. Moreover, Cx43-S282A+/- mice displayed arrhythmias and impaired cardiac output with global myocardial apoptosis. Our findings revealed that Cx43 dephosphorylation at S282 triggers arrhythmias and, at least partly, contributes to cardiomyocyte death upon I/R by activating the p38/Fas/FADD pathway, providing a novel molecular mechanism and potential target for protecting against cardiac I/R injury.

Keywords: Apoptosis; Arrhythmia; Connexin 43; Ischemia/reperfusion; Phosphorylation.

PubMed Disclaimer

References

    1. Ai X, Pogwizd SM (2005) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63. https://doi.org/10.1161/01.RES.0000152325.07495.5a - PubMed
    1. Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, Glanzmann M, Burger F, Paneni F, Galan K, Pelli G, Vuilleumier N, Belin A, Vallée JP, Mach F, Lüscher TF (2015) Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J 36:516–526. https://doi.org/10.1093/eurheartj/ehu400 - PubMed
    1. Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjølbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40:790–798. https://doi.org/10.1016/j.yjmcc.2006.03.005 - PubMed
    1. Bodendiek SB, Raman G (2010) Connexin modulators and their potential targets under the magnifying glass. Curr Med Chem 17:4191–4230 - PubMed
    1. Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655. https://doi.org/10.1111/j.1582-4934.2011.01516.x - PubMed - PMC

Publication types

LinkOut - more resources