Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb;83(2):635-644.
doi: 10.1002/mrm.27918. Epub 2019 Aug 29.

Respiratory motion corrected 4D flow using golden radial phase encoding

Affiliations
Free article

Respiratory motion corrected 4D flow using golden radial phase encoding

Christoph Kolbitsch et al. Magn Reson Med. 2020 Feb.
Free article

Abstract

Purpose: To minimize respiratory motion artifacts while achieving predictable scan times with 100% scan efficiency for thoracic 4D flow MRI.

Methods: A 4D flow sequence with golden radial phase encoding (GRPE) was acquired in 9 healthy volunteers covering the heart, aorta, and venae cavae. Scan time was 15 min, and data were acquired without motion gating during acquisition. Data were retrospectively re-binned into respiratory and cardiac phases based on respiratory self-navigation and the electrocardiograph signals, respectively. Nonrigid respiratory motion fields were extracted and corrected for during the k-t SENSE reconstruction. A respiratory-motion corrected (GRPE-MOCO) and a free-breathing (GRPE-UNCORR) 4D flow dataset was reconstructed using 100% of the acquired data. For comparison, a respiratory gated Cartesian 4D flow acquisition (CART-REF) covering the aorta was acquired. Stroke volumes and peak flows were compared. Additionally, an internal flow validation based on mass conservation was performed on the GRPE-MOCO and GRPE-UNCORR. Statistically significant differences were analyzed using a paired Wilcoxon test.

Results: Stroke volumes and peak flows in the aorta between GRPE-MOCO and the CART-REF showed a mean difference of -1.5 ± 10.3 mL (P > 0.05) and 25.2 ± 55.9 mL/s (P > 0.05), respectively. Peak flow in the GRPE-UNCORR data was significantly different compared with CART-REF (P < 0.05). GRPE-MOCO showed higher accuracy for internal consistency analysis than GRPE-UNCORR.

Conclusion: The proposed 4D flow sequence allows a straight-forward planning by covering the entire thorax and ensures a predictable scan time independent of cardiac cycle variations and breathing patterns.

Keywords: 4D flow; k-t SENSE; nonrigid motion correction; radial phase encoding.

PubMed Disclaimer

References

REFERENCES

    1. Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:7.
    1. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17:72.
    1. Carlsson M, Töger J, Kanski M, et al. Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson. 2011;13:55.
    1. Schnell S, Markl M, Entezari P, et al. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med. 2014;72:522-533.
    1. Giese D, Wong J, Greil GF, Buehrer M, Schaeffter T, Kozerke S. Towards highly accelerated Cartesian time-resolved 3D flow cardiovascular magnetic resonance in the clinical setting. J Cardiovasc Magn Reson. 2014;16:42.

LinkOut - more resources