Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan;34(1):18-29.
doi: 10.1097/BOT.0000000000001615.

Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection

Affiliations
Review

Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection

Willem-Jan Metsemakers et al. J Orthop Trauma. 2020 Jan.

Abstract

Fracture-related infection (FRI) remains a challenging complication that imposes a heavy burden on orthopaedic trauma patients. The surgical management eradicates the local infectious focus and if necessary facilitates bone healing. Treatment success is associated with debridement of all dead and poorly vascularized tissue. However, debridement is often associated with the formation of a dead space, which provides an ideal environment for bacteria and is a potential site for recurrent infection. Dead space management is therefore of critical importance. For this reason, the use of locally delivered antimicrobials has gained attention not only for local antimicrobial activity but also for dead space management. Local antimicrobial therapy has been widely studied in periprosthetic joint infection, without addressing the specific problems of FRI. Furthermore, the literature presents a wide array of methods and guidelines with respect to the use of local antimicrobials. The present review describes the scientific evidence related to dead space management with a focus on the currently available local antimicrobial strategies in the management of FRI. LEVEL OF EVIDENCE:: Therapeutic Level V. See Instructions for Authors for a complete description of levels of evidence.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflict of interest.

Figures

FIGURE 1.
FIGURE 1.
A, Polymethyl methacrylate (PMMA)–coated humeral nail. The nail was custom molded (handmade) in the operating room using PMMA and a combination of antibiotics. B, PMMA spacer for application in the IM canal of the tibia. The application of PMMA on a rod was achieved using a hand rolling technique.

References

    1. Metsemakers WJ, Kuehl R, Moriarty TF, et al. Infection after fracture fixation: current surgical and microbiological concepts. Injury. 2018;49:511–522. - PubMed
    1. McNally MA. Infection after fracture. In: Kates S, Borens O, eds. Principles of Orthopedic Infection. New York, NY: Thieme Verlag; 2016:139–165.
    1. Patzakis MJ, Mazur K, Wilkins J, et al. Septopal beads and autogenous bone grafting for bone defects in patients with chronic osteomyelitis. Clin Orthop Relat Res. 1993;295:112–118. - PubMed
    1. Calhoun JH, Henry SL, Anger DM, et al. The treatment of infected nonunions with gentamicin-polymethylmethacrylate antibiotic beads. Clin Orthop Relat Res. 1993;295:23–27. - PubMed
    1. Blaha JD, Calhoun JH, Nelson CL, et al. Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. Clin Orthop Relat Res. 1993;295:8–12. - PubMed

Substances