Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019;25(11):1210-1235.
doi: 10.2174/1381612825666190425155126.

Molecular Mechanisms Underlying Cancer Preventive and Therapeutic Potential of Algal Polysaccharides

Affiliations
Review

Molecular Mechanisms Underlying Cancer Preventive and Therapeutic Potential of Algal Polysaccharides

Soraya Sajadimajd et al. Curr Pharm Des. 2019.

Abstract

Background: Algal polysaccharide and oligosaccharide derivatives have been shown to possess a variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent progress of algal polysaccharides' therapeutic applications as anticancer agents, as well as underlying cellular and molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides with anticancer activities were illustrated.

Methods: Electronic databases including "Scopus", "PubMed", and "Cochrane library" were searched using the keywords "cancer", or "tumor", or "malignancy" in title/abstract, along with "algae", or "algal" in the whole text until July 2018. Only English language papers were included.

Results: The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans, Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo. The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest, modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/ CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides against oncogenesis.

Conclusion: Algal polysaccharides play a crucial role in the management of cancer and may be considered the next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy and safety of algal polysaccharides in patients with cancer.

Keywords: Algal polysaccharide; anti-inflammatory; anticancer; antioxidant; antitumor; sulfated polysaccharide..

PubMed Disclaimer

MeSH terms