Predicting sediment and nutrient concentrations from high-frequency water-quality data
- PMID: 31469846
- PMCID: PMC6716630
- DOI: 10.1371/journal.pone.0215503
Predicting sediment and nutrient concentrations from high-frequency water-quality data
Abstract
Water-quality monitoring in rivers often focuses on the concentrations of sediments and nutrients, constituents that can smother biota and cause eutrophication. However, the physical and economic constraints of manual sampling prohibit data collection at the frequency required to adequately capture the variation in concentrations through time. Here, we developed models to predict total suspended solids (TSS) and oxidized nitrogen (NOx) concentrations based on high-frequency time series of turbidity, conductivity and river level data from in situ sensors in rivers flowing into the Great Barrier Reef lagoon. We fit generalized-linear mixed-effects models with continuous first-order autoregressive correlation structures to water-quality data collected by manual sampling at two freshwater sites and one estuarine site and used the fitted models to predict TSS and NOx from the in situ sensor data. These models described the temporal autocorrelation in the data and handled observations collected at irregular frequencies, characteristics typical of water-quality monitoring data. Turbidity proved a useful and generalizable surrogate of TSS, with high predictive ability in the estuarine and fresh water sites. Turbidity, conductivity and river level served as combined surrogates of NOx. However, the relationship between NOx and the covariates was more complex than that between TSS and turbidity, and consequently the ability to predict NOx was lower and less generalizable across sites than for TSS. Furthermore, prediction intervals tended to increase during events, for both TSS and NOx models, highlighting the need to include measures of uncertainty routinely in water-quality reporting. Our study also highlights that surrogate-based models used to predict sediments and nutrients need to better incorporate temporal components if variance estimates are to be unbiased and model inference meaningful. The transferability of models across sites, and potentially regions, will become increasingly important as organizations move to automated sensing for water-quality monitoring throughout catchments.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Leigh C, Burford M, Connolly R, Olley J, Saeck E, Sheldon F, et al. Science to support management of receiving waters in an event-driven ecosystem: from land to river to sea. Water. 2013;5: 780–97.
-
- O’Brien KR, Weber TR, Leigh C, Burford MA. Sediment and nutrient budgets are inherently dynamic: evidence from a long-term study of two subtropical reservoirs. Hydrol Earth Syst Sci. 2016;20: 4881–94.
-
- Wallace R, Huggins R, King O, Gardiner R, Thomson B, Orr DN, et al. Total suspended solids, nutrient and pesticide loads (2014–2015) for rivers that discharge to the Great Barrier Reef–Great Barrier Reef Catchment Loads Monitoring Program. Department of Science. Information Technology and Innovation, Brisbane. 2016.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
