Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug 30;12(1):426.
doi: 10.1186/s13071-019-3683-5.

Bacterial larvicides used for malaria vector control in sub-Saharan Africa: review of their effectiveness and operational feasibility

Affiliations
Review

Bacterial larvicides used for malaria vector control in sub-Saharan Africa: review of their effectiveness and operational feasibility

Yahya A Derua et al. Parasit Vectors. .

Abstract

Several trials and reviews have outlined the potential role of larviciding for malaria control in sub-Saharan Africa (SSA) to supplement the core indoor insecticide-based interventions. It has been argued that widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) interventions in many parts of Africa result in many new areas with low and focal malaria transmission that can be targeted with larvicides. As some countries in SSA are making good progress in malaria control, larval source management, particularly with bacterial larvicides, could be included in the list of viable options to maintain the gains achieved while paving the way to malaria elimination. We conducted a review of published literature that investigated the application of bacterial larvicides, Bacillus thuringiensis var. israelensis (Bti) and/or Bacillus sphaericus (Bs) for malaria vector control in SSA. Data for the review were identified through PubMed, the extensive files of the authors and reference lists of relevant articles retrieved. A total of 56 relevant studies were identified and included in the review. The findings indicated that, at low application rates, bacterial larvicide products based on Bti and/or Bs were effective in controlling malaria vectors. The larvicide interventions were found to be feasible, accepted by the general community, safe to the non-target organisms and the costs compared fairly well with those of other vector control measures practiced in SSA. Our review suggests that larviciding should gain more ground as a tool for integrated malaria vector control due to the decline in malaria which creates more appropriate conditions for the intervention and to the recognition of limitations of insecticide-based vector control tools. The advancement of new technology for mapping landscapes and environments could moreover facilitate identification and targeting of the numerous larval habitats preferred by the African malaria vectors. To build sustainable anti-larval measures in SSA, there is a great need to build capacity in relevant specialties and develop organizational structures for governance and management of larval source management programmes.

Keywords: Anopheles arabiensis; Anopheles funestus; Anopheles gambiae (sensu lato); Anopheles gambiae (sensu stricto); Bacillus sphaericus; Bacillus thuringiensis var. israelensis; Bacterial larvicides; Sub-Saharan Africa.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Number of reviewed publications by country. For publications involving multi-country studies, each country was counted towards the total, e.g. Kenya and Tanzania [94] and Botswana and Zimbabwe [79]. Note: Zaire: now The Democratic Republic of the Congo

References

    1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–211. doi: 10.1038/nature15535. - DOI - PMC - PubMed
    1. Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–649. doi: 10.1016/S1473-3099(18)30172-5. - DOI - PMC - PubMed
    1. Hancock PA, Wiebe A, Gleave KA, Bhatt S, Cameron E, Trett A, et al. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc Natl Acad Sci USA. 2018;115:5938–5943. doi: 10.1073/pnas.1801826115. - DOI - PMC - PubMed
    1. Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018;391:1577–1588. doi: 10.1016/S0140-6736(18)30427-6. - DOI - PMC - PubMed
    1. Sougoufara S, Doucouré S, Sembéne PMB, Harry M, Sokhna C. Challenges for malaria vector control in sub-Saharan Africa: resistance and behavioral adaptations in Anopheles populations. J Vector Borne Dis. 2017;54:4–15. - PubMed