Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct:98:103276.
doi: 10.1016/j.jbi.2019.103276. Epub 2019 Aug 29.

Ontology-based clinical information extraction from physician's free-text notes

Affiliations
Free article

Ontology-based clinical information extraction from physician's free-text notes

Engy Yehia et al. J Biomed Inform. 2019 Oct.
Free article

Abstract

Documenting clinical notes in electronic health records might affect physician's workflow. In this paper, an Ontology-based clinical information extraction system, OB-CIE, has been developed. OB-CIE system provides a method for extracting clinical concepts from physician's free-text notes and converts the unstructured clinical notes to structured information to be accessed in electronic health records. OB-CIE system can help physicians to document visit notes without changing their workflow. For recognizing named entities of clinical concepts, ontology concepts have been used to construct a dictionary of semantic categories, then, exact dictionary matching method has been used to match noun phrases to their semantic categories. A rule-based approach has been used to classify clinical sentences to their predefined categories. The system evaluation results have achieved an F-measure of 94.90% and 97.80% for concepts classification and sentences classification, respectively. The results have showed that OB-CIE system performed well on extracting clinical concepts compared with data mining techniques. The system can be used in another field by adapting its ontology and extraction rule set.

Keywords: Electronic health records; Information extraction; Natural language processing.

PubMed Disclaimer

LinkOut - more resources