Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec:59:104750.
doi: 10.1016/j.ultsonch.2019.104750. Epub 2019 Aug 23.

Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation

Affiliations
Free article

Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation

Giuseppe Mancuso et al. Ultrason Sonochem. 2019 Dec.
Free article

Abstract

WAS is a polluting and hazardous waste generated in WWTPs that must be treated to prevent pollution and human health risks. Anaerobic digestion is the most used process for sludge stabilization. However, it must be improved in terms of both speed and extend of degradation. With the purpose of reducing the energy and chemical consumption linked to sludge treatment, in this study, different anaerobic digestion pre-treatments such as low-level mechanical (hydrodynamic cavitation, 2 bar), low-level thermal (50 °C) and low-level alkaline (NaOH, KOH and Ca(OH)2, pH 10) methods, and a combination thereof, were tested as strategies to improve sludge solubilisation. When the pre-treatments were used alone, the alkaline pre-treatment showed the highest sludge solubilisation. Among the alkaline reagents tested, NaOH and KOH led to higher DDPCOD (41.6 and 39.4%), while only 8.4% was achieved by using Ca(OH)2. However, the low-level hydrodynamic cavitation assisted thermo-alkaline pre-treatment was the most efficient in terms of both sludge solubilisation (DDPCOD = 53.0%) and energy efficiency (EE = 64.5 mgΔSCOD kJ-1). The synergetic effects of the combined pre-treatment were also confirmed by the highest release of EPS. Furthermore, cytometric analyses showed that the main mechanism involved in sludge solubilisation for the investigated pre-treatments was flocs disintegration rather than cell lysis.

Keywords: Hydrodynamic cavitation; Low-alkaline treatment; Low-thermal treatment; Sludge solubilisation; Wastewater treatment.

PubMed Disclaimer

LinkOut - more resources