Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec:100:103404.
doi: 10.1016/j.jmbbm.2019.103404. Epub 2019 Aug 27.

Biodegradable implantable balloons: Mechanical stability under physiological conditions

Affiliations

Biodegradable implantable balloons: Mechanical stability under physiological conditions

Moran Haim Zada et al. J Mech Behav Biomed Mater. 2019 Dec.

Abstract

Rotator cuff tendons injuries occurs as a result of trauma, e.g. due to falling, mechanical injuries and frequent overhead activity and as natural degenerative tears in elderly people. Biodegradable balloon shaped spacer of Poly-(L-lactide-co-ε-caprolactone) (PLCL) are applied in the treatment of these injuries. This type of treatment involves insertion of inflated biodegradable implant into the tissues of the damaged region in the shoulder to avoid shoulder impingement and reduce friction between the acromion and the humeral head and propagation of inflammation. The implant must maintain integrity under significant mechanical loading in order to remain effective. However, with time, the implant is exposed to the risk of failure due to the high pressure caused by the muscular motion and the friction with the bones. We report in this study the limits of the mechanical stability of the PLCL balloon shape spacer (implant) under prolonged cyclic loading, so as to be able to predict their physical stability in vivo. We have demonstrated in an in vitro settings that the implant withstands fatigue cycles for significantly longer than 8 weeks, which provides sufficient time window for patients to perform substantial rehabilitation and recover from an injury. The data presented herein is expected to assist medical practitioners in safety and efficacy measurements and assessment following spacer implantation.

Keywords: Biodegradable balloons; Implantable spacer; Mechanical stability; Poly-L-lactide-co-ε-caprolactone (PLCL).

PubMed Disclaimer

Publication types

LinkOut - more resources