Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec;42(6):2215-2225.
doi: 10.1007/s10753-019-01085-z.

Paeoniflorin Prevents Intestinal Barrier Disruption and Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in Caco-2 Cell Monolayers

Affiliations

Paeoniflorin Prevents Intestinal Barrier Disruption and Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in Caco-2 Cell Monolayers

Xi-Xi Wu et al. Inflammation. 2019 Dec.

Abstract

Inflammatory bowel disease (IBD) in humans is closely related to bacterial infection and the disruption of the intestinal barrier. Paeoniflorin (PF), a bioactive compound from Paeonia lactiflora Pallas plants, exerts a potential effect of anti-inflammatory reported in various researches. However, the effect of PF on intestinal barrier function and its related mechanisms has not been identified. Here, we investigate the PF potential anti-inflammatory effect on lipopolysaccharide (LPS)-stimulated human Caco-2 cell monolayers and explore its underlying key molecular mechanism. In this context, PF significantly increased TEER value, decreased intestinal epithelium FITC-dextran flux permeability, and restored the expressions of occludin, ZO-1, and claudin5 in LPS-induced Caco-2 cell. In vitro, treatment of PF significantly inhibited LPS-induced expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). In addition, we found that PF suppressed nuclear factor kappa B (NF-κB) signaling via activating the Nrf2/HO-1 signaling pathways in ILPS-stimulated Caco-2 cells. Our findings indicate that PF has an inhibitory effect on endothelial injury. Our findings suggested that PF has an anti-inflammatory effect in ILPS-stimulated Caco-2 cells, which might be a potential therapeutic agent against IBD and intestinal inflammation.

Keywords: NF-κB; Nrf2/OH-1; intestinal barrier; paeoniflorin; tight junction protein.

PubMed Disclaimer

References

    1. Bazzoni, Gianfranco, and Elisabetta Dejana. 2004. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiological Reviews 84 (3): 869–901. - DOI
    1. Chang, K.W., and C.Y. Kuo. 2015. 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food & Function 6 (10): 3334–3341. https://doi.org/10.1039/c5fo00513b . - DOI
    1. Chen, Qianru, Oliver Chen, Isabela M. Martins, Hou Hu, Zhao Xue, Jeffrey B. Blumberg, and Bafang Li. 2017. Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food & Function 8 (3): 1144–1151. https://doi.org/10.1039/c6fo01347c . - DOI
    1. Chen, J., M. Zhang, M. Zhu, J. Gu, J. Song, L. Cui, D. Liu, Q. Ning, X. Jia, and L. Feng. 2018. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1alpha/NF-kappaB signaling pathway. Food & Function 9 (4): 2386–2397. https://doi.org/10.1039/c7fo01406f . - DOI
    1. Cocetta, V., D. Catanzaro, V. Borgonetti, E. Ragazzi, M.C. Giron, P. Governa, I. Carnevali, M. Biagi, and M. Montopoli. 2019. A fixed combination of probiotics and herbal extracts attenuates intestinal barrier dysfunction from inflammatory stress in an in vitro model using Caco-2 cells. Recent Patents on Food, Nutrition & Agriculture 10 (1): 62–69. https://doi.org/10.2174/2212798410666180808121328 . - DOI

LinkOut - more resources