Taurine and beta-alanine uptake in primary astrocytes differentiating in culture: effects of ions
- PMID: 3147403
- DOI: 10.1007/BF00970753
Taurine and beta-alanine uptake in primary astrocytes differentiating in culture: effects of ions
Abstract
The effects of ions on taurine and beta-alanine uptake were studied in astrocytes during cellular differentiation in primary cultures. The uptakes were strictly Na+-dependent and also inhibited by the omission of K+ and in the presence of ouabain suggesting that their transport is fuelled mainly by these cation gradients. Two sodium ions were associated in the transport of one taurine and beta-alanine molecule across cell membranes. A reduction in Cl- concentration also markedly inhibited the uptake of both amino acids, indicating that this anion is of importance in the transport processes. The similar ion dependency profiles of taurine and beta-alanine uptake corroborate the assumption that the uptake of these amino acids in astrocytes is mediated by the same carrier. In Na+- and K+-free media both taurine and beta-alanine uptakes were reduced significantly more in 14-day-old or older than in 7-day-old cultures. No significant changes occurred in the coupling ratio between Na+ and taurine or beta-alanine as a function of spontaneous cellular differentiation or upon dBcAMP treatment. These results suggest that the uptake systems of these structurally related amino acids in astrocytes have reached a relatively high degree of functional maturity by two weeks in culture.