Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 1;1861(4):148078.
doi: 10.1016/j.bbabio.2019.148078. Epub 2019 Aug 30.

Tuning antenna function through hydrogen bonds to chlorophyll a

Affiliations
Free article

Tuning antenna function through hydrogen bonds to chlorophyll a

Manuel J Llansola-Portoles et al. Biochim Biophys Acta Bioenerg. .
Free article

Abstract

We describe a molecular mechanism tuning the functional properties of chlorophyll a (Chl-a) molecules in photosynthetic antenna proteins. Light-harvesting complexes from photosystem II in higher plants - specifically LHCII purified with α- or β-dodecyl-maltoside, along with CP29 - were probed by low-temperature absorption and resonance Raman spectroscopies. We show that hydrogen bonding to the conjugated keto carbonyl group of protein-bound Chl-a tunes the energy of its Soret and Qy absorption transitions, inducing red-shifts that are proportional to the strength of the hydrogen bond involved. Chls-a with non-H-bonded keto C131 groups exhibit the blue-most absorption bands, while both transitions are progressively red-shifted with increasing hydrogen-bonding strength - by up 382 & 605 cm-1 in the Qy and Soret band, respectively. These hydrogen bonds thus tune the site energy of Chl-a in light-harvesting proteins, determining (at least in part) the cascade of energy transfer events in these complexes.

Keywords: Chl-a; Energy regulation; Hydrogen bonds; Light-harvesting; Oxygenic photosynthesis.

PubMed Disclaimer

Publication types

MeSH terms

Substances