Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan 1:101:14-25.
doi: 10.1016/j.actbio.2019.08.045. Epub 2019 Aug 30.

In situ bioprinting - Bioprinting from benchside to bedside?

Affiliations
Review

In situ bioprinting - Bioprinting from benchside to bedside?

Satnam Singh et al. Acta Biomater. .

Abstract

Bioprinting technologies have been advancing at the convergence of automation, digitalization, and new tissue engineering (TE) approaches. In situ bioprinting may be favored during certain situations when compared with the conventional in vitro bioprinting when de novo tissues are to be printed directly on the intended anatomical location in the living body. To date, few attempts have been made to fabricate in situ tissues, which can be safely arrested and immobilized while printing in preclinical living models. In this review, we have explained the need and utility for in situ bioprinting with regard to the conventional bioprinting approach. The two main in situ bioprinting approaches, namely, robotic arm and handheld approaches, have been defined and differentiated. The various studies involving in situ fabrication of skin, bone, and cartilage tissues have been elucidated. Finally, we have also discussed the advantages, challenges, and the prospects in the field of in situ bioprinting modalities in line with parallel technological advancements. STATEMENT OF SIGNIFICANCE: In situ bioprinting may be favored during certain situations when compared with the conventional in vitro bioprinting when tissues are to be fabricated or repaired directly on the intended anatomical location in the living body, using the body as a bioreactor. However, the technology requires a lot more improvement to fabricate complex tissues in situ, which could eventually be possible through the multi-disciplinary innovations in tissue engineering. This review explains the need and utility and current approaches by handheld and robotic modes for in situ bioprinting. The latest studies involving in situ fabrication of skin, bone, and cartilage tissues have been elucidated. The review also covers the background studies, advantages, technical and ethical challenges, and possible suggestions for future improvements.

Keywords: 3D printing; Bioinks; Bioprinting; Hydrogels; In situ.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources