Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 15:205:116127.
doi: 10.1016/j.neuroimage.2019.116127. Epub 2019 Aug 30.

The adverse effect of gradient nonlinearities on diffusion MRI: From voxels to group studies

Affiliations
Free article

The adverse effect of gradient nonlinearities on diffusion MRI: From voxels to group studies

Hamed Y Mesri et al. Neuroimage. .
Free article

Abstract

Nonlinearities of gradient magnetic fields in diffusion MRI (dMRI) can introduce systematic errors in estimates of diffusion measures. While there are correction methods that can compensate for these errors, as presented in the Human Connectome Project, such nonlinear effects are often assumed to be negligible for typical applications, and as a result, gradient nonlinearities are mostly left uncorrected. In this work, we perform a systematic analysis to investigate the effect of gradient nonlinearities on dMRI studies, from voxel-wise estimates to group study outcomes. We present a novel framework to quantify and visualize these effects by decomposing them into their magnitude and angle components. Mean magnitude deviation and fractional gradient anisotropy are introduced to quantify the distortions in the size and shape of gradient vector distributions. By means of Monte-Carlo simulations and real data from the Human Connectome Project, the errors on dMRI measures derived from the diffusion tensor imaging and diffusional kurtosis imaging are highlighted. We perform a group study to showcase the alteration in the significance and effect size due to ignoring gradient nonlinearity correction. Our results indicate that the effect of gradient field nonlinearities on dMRI studies can be significant and may complicate the interpretation of the results and conclusions.

Keywords: Diffusion MRI; Diffusion tensor imaging; Diffusional kurtosis imaging; Fiber tractography; Fractional anisotropy; Gradient nonlinearities; Gradient nonlinearity correction; Group-wise study; Mean diffusivity.

PubMed Disclaimer

Publication types

LinkOut - more resources