Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Oct;22(10):1536-1543.
doi: 10.1038/s41593-019-0480-6. Epub 2019 Sep 2.

The next generation of approaches to investigate the link between synaptic plasticity and learning

Affiliations
Review

The next generation of approaches to investigate the link between synaptic plasticity and learning

Yann Humeau et al. Nat Neurosci. 2019 Oct.

Abstract

Activity-dependent synaptic plasticity has since long been proposed to represent the subcellular substrate of learning and memory, one of the most important behavioral processes through which we adapt to our environment. Despite the undisputed importance of synaptic plasticity for brain function, its exact contribution to learning processes in the context of cellular and connectivity modifications remains obscure. Causally bridging synaptic and behavioral modifications indeed remains limited by the available tools to measure and control synaptic strength and plasticity in vivo under behaviorally relevant conditions. After a brief summary of the current state of knowledge of the links between synaptic plasticity and learning, we will review and discuss the available and desired tools to progress in this endeavor.

PubMed Disclaimer

References

    1. Takeuchi, T., Duszkiewicz, A. J. & Morris, R. G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B 369, 20130288 (2013).
    1. Martin, S. J. & Morris, R. G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002). - PubMed
    1. Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.) 334, 33–46 (1983).
    1. Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986). - PubMed
    1. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

Publication types

LinkOut - more resources