Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 26;123(38):7974-7983.
doi: 10.1021/acs.jpcb.9b05226. Epub 2019 Sep 12.

Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex

Affiliations

Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex

Qiang Shao et al. J Phys Chem B. .

Abstract

Understanding the protein-ligand binding is of fundamental biological interest and is essential for structure-based drug design. The difficulty in capturing the dynamic process, however, poses a great challenge for current experimental and theoretical simulation techniques. A selective integrated-tempering-sampling molecular dynamics (SITSMD) method offering an option for selectively enhanced sampling of the ligand in a protein-ligand complex was utilized to quantitatively illuminate the binding of benzamidine to the wild-type trypsin protease and its two mutants (S214E and S214K). The SITSMD simulations could produce consistent results as the extensive conventional MD simulation and gave additional insights into the binding pathway for the test protein-ligand complex system using significantly saved computational resource and time, indicating the potential of such a method in investigating protein-ligand binding. Additionally, the simulations identified the different roles of trypsin-benzamidine van der Waals (vdW) and electrostatic interactions in the binding: the former interaction works as the driving force for dragging the benzamidine close to the native binding pocket, and the latter interaction mainly contributes to stabilizing the benzamidine inside the pocket. The S214E mutation introduces more favorable electrostatic interactions, and as a result, both vdW and electrostatic interactions drive the benzamidine binding, lowering the binding and unbinding free energy barrier. In contrast, the S214K mutation prohibits the binding of the benzamidine to the native ligand binding pocket by introducing disliked charge-charge interactions. In summary, these findings suggest that the change in specific residues could modify the protein druggability, including the binding kinetics and thermodynamics.

PubMed Disclaimer

Publication types

LinkOut - more resources