Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar;140(3):615-623.e5.
doi: 10.1016/j.jid.2019.07.716. Epub 2019 Aug 31.

Filaggrin Expression and Processing Deficiencies Impair Corneocyte Surface Texture and Stiffness in Mice

Affiliations
Free article

Filaggrin Expression and Processing Deficiencies Impair Corneocyte Surface Texture and Stiffness in Mice

Jacob P Thyssen et al. J Invest Dermatol. 2020 Mar.
Free article

Abstract

Abundant corneocyte surface protrusions, observed in patients with atopic dermatitis with filaggrin loss-of-function mutations, are inversely associated with levels of natural moisturizing factors (NMFs) in the stratum corneum. To dissect the etiological role of NMFs and filaggrin deficiency in surface texture alterations, we examined mouse models with genetic deficiencies in the synthesis or degradation of filaggrin monomers for NMFs, cell stiffness (elastic modulus) and corneocyte surface protrusion density (dermal texture index). Five neonatal and adult mouse models carrying inactivating mutations of SASPase (Sasp-/-), filaggrin (Flgft/ft and Flg-/-), filaggrin-hornerin (FlgHrnr-/-), and bleomycin hydrolase (Blmh-/-) were investigated. Sasp-/- and Flg-/- were on the hairless mouse background. Atomic force microscopy was used to determine elastic modulus and dermal texture index. Corneocytes of each neonatal as well as hairless adult knockout mouse exhibited an increased number of protrusions and decreased elastic modulus. In these mice, NMFs were reduced except for Sasp-/-. Dermal texture index was inversely correlated with NMFs and elastic modulus. Our findings demonstrate that any filaggrin-NMF axis deficiency can affect corneocyte mechanical properties in mice and likely in humans. Differences in NMFs and corneocyte surface texture between neonatal and adult as well as hairless and hairy mice emphasize the need for carefully selecting the most appropriate animal models for studies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources