Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug 31;11(9):1282.
doi: 10.3390/cancers11091282.

Exploring Tumor Heterogeneity Using PET Imaging: The Big Picture

Affiliations
Review

Exploring Tumor Heterogeneity Using PET Imaging: The Big Picture

Clément Bailly et al. Cancers (Basel). .

Abstract

Personalized medicine represents a major goal in oncology. It has its underpinning in the identification of biomarkers with diagnostic, prognostic, or predictive values. Nowadays, the concept of biomarker no longer necessarily corresponds to biological characteristics measured ex vivo but includes complex physiological characteristics acquired by different technologies. Positron-emission-tomography (PET) imaging is an integral part of this approach by enabling the fine characterization of tumor heterogeneity in vivo in a non-invasive way. It can effectively be assessed by exploring the heterogeneous distribution and uptake of a tracer such as 18F-fluoro-deoxyglucose (FDG) or by using multiple radiopharmaceuticals, each providing different information. These two approaches represent two avenues of development for the research of new biomarkers in oncology. In this article, we review the existing evidence that the measurement of tumor heterogeneity with PET imaging provide essential information in clinical practice for treatment decision-making strategy, to better select patients with poor prognosis for more intensive therapy or those eligible for targeted therapy.

Keywords: PET; SUV; heterogeneity; nuclear medicine; radiomics; radiopharmaceuticals.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
An example of a 46-year-old patient with pluri-metastatic intestinal neuroendocrine tumor (grade 2, ki67 at 4%). 68Ga DOTA-TOC (A), FDG-PET (18F-fluoro-deoxyglucose- positron-emission-tomography) (B) and FDOPA (18F-fluorodihydroxyphenylalanine) (C) imaging were realized. MIP (maximum intensity projections) images from the respective PET data sets are shown. The subject has positive on both FDOPA and somatostatine-receptor imaging, dominant disease which exhibits no FDG uptake (green arrows). One hepatic lesion was FDOPA-negative and 68Ga-DOTA-TOC-positive (red arrow) and one gastric lesion was FDOPA-positive and 68Ga-DOTA-TOC negative (blue arrow). Images courtesy of Pr C. Bodet-Milin.
Figure 2
Figure 2
An example of 37-year-old patient with pluri-metastatic paraganglioma. MIP (maximum intensity projections) images of the realized 123MIBG-scintigraphy (A), FDG-PET (B) and FDOPA-PET (C) are shown. The subject has a mediastinal lesion, barely seen on 123MIBG-scintigraphy and clearly positive with the others tracers (red arrows). Pulmonary and skull lesions (green arrows) were only visible on FDOPA-PET. Images courtesy of Dr C. Ansquer © Catherine Ansquer
Figure 3
Figure 3
Selection of regions of interest in 57-y-old patient before chemotherapy. (A) Graded color-scaled parametric analysis applied in reconstructed coronal PET image shows most active tumor in upper abdomen. (B) Transverse PET image with a higher scale reveals celiac tumor (T) with activity profile crossing the hottest point (red spot). (C) Corresponding activity profile in counts-per-pixel. Isocontours are drawn with lower autocontour threshold of 4500 counts-per-pixel (red isocontour at inset in B). (D) Normal background tissue (N): two large ROIs are manually selected on gluteal muscles, avoiding iliac bone marrow activity. This research was originally published in JNM [76]. © SNMMI.
Figure 4
Figure 4
Whole-body 18F-FDG PET scan (A) tumor segmentation (B) and voxel-intensity resampling (C) allowing extraction of different features (D) by analysis of consecutive voxels in a direction (for cooccurrence matrices) (a), alignment of voxels with same intensity (b), difference between voxels and their neighbors (c), and zones of voxels with same intensity (d). This research was originally published in JNM [90]. © SNMMI.
Figure 5
Figure 5
Workflow of a nomogram construction combining tumor and heterogeneity features extracted from both PET and CT components of routinely acquired FDG-PET scans in non-small cell lung cancers, allowing for better stratification among patients with stage II–III, compared to stage I. This research was originally published in EJNMMI [104]. © Springer.

Similar articles

Cited by

References

    1. Tabassum D.P., Polyak K. Tumorigenesis: It takes a village. Nat. Rev. Cancer. 2015;15:473–483. doi: 10.1038/nrc3971. - DOI - PubMed
    1. Dagogo-Jack I., Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018;15:81–94. doi: 10.1038/nrclinonc.2017.166. - DOI - PubMed
    1. Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., Van Stiphout R.G., Granton P., Zegers C.M., Gillies R., Boellard R., Dekker A., et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 2012;48:441–446. doi: 10.1016/j.ejca.2011.11.036. - DOI - PMC - PubMed
    1. Aerts H.J.W.L., Velazquez E.R., Leijenaar R.T.H., Parmar C., Grossmann P., Cavalho S., Bussink J., Monshouwer R., Haibe-Kains B., Rietveld D., et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014;5:4006. doi: 10.1038/ncomms5006. - DOI - PMC - PubMed
    1. Bensch F., Van Der Veen E.L., Hooge M.N.L.-D., Jorritsma-Smit A., Boellaard R., Kok I.C., Oosting S.F., Schröder C.P., Hiltermann T.J.N., Van Der Wekken A.J., et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018;24:1852–1858. doi: 10.1038/s41591-018-0255-8. - DOI - PubMed

LinkOut - more resources