Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep 3;10(1):281.
doi: 10.1186/s13287-019-1371-1.

miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies

Affiliations
Review

miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies

Si-Yang Wang et al. Stem Cell Res Ther. .

Abstract

Stem cell therapy has been applied in many fields. Basic and clinical studies on stem cell therapy for acute kidney injury (AKI) have been conducted. Stem cells have been found to exert renal protection through a variety of mechanisms, such as regulating the immune system and secreting growth factors, cytokines, and extracellular vesicles (EVs). Among them, EVs are considered to be important mediators for stem cell protection because they contain various biological components, including microRNAs (miRNAs). miRNAs are a class of small RNAs that function in posttranscriptional gene regulation. A number of studies have confirmed that miRNAs in stem cell-derived EVs can protect from AKI. miRNAs can enter the injured renal tissue through EVs released from stem cells, thereby exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenesis effects on AKI. However, the stem cell sources and AKI models used in these studies have differed. This article will summarize the miRNAs that play a role in kidney protection in stem cell EVs and clarifies the treatment characteristics and mechanisms of different miRNAs. This may provide a reference for clinical practice for acute and chronic kidney diseases.

Keywords: Acute kidney injury; Stem cell; microRNA.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The mechanism of miRNAs in stem cell-derived extracellular vesicles for acute kidney injury. Extracellular vesicles secreted by stem cells carry miRNAs and deliver them into renal cells. These miRNAs inhibit target mRNA translation or induce target mRNA degradation through complementarity to the region of target mRNAs. This process can play an anti-inflammatory, anti-apoptotic, and anti-fibrotic effects on AKI

Similar articles

Cited by

References

    1. Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–R134. doi: 10.1093/hmg/dds317. - DOI - PubMed
    1. Breakefield XO, Frederickson RM, Simpson RJ. Gesicles: microvesicle "cookies" for transient information transfer between cells. Molecular Therapy J of the Am Soc Gene Therapy. 2011;19:1574–1576. doi: 10.1038/mt.2011.169. - DOI - PMC - PubMed
    1. Liu B, Liu L, Tsykin A, Goodall GJ, Cairns MJ, Li J. Discovering functional microRNA-mRNA regulatory modules in heterogeneous data. Adv Exp Med Biol. 2013;774:267–290. doi: 10.1007/978-94-007-5590-1_14. - DOI - PubMed
    1. Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, Pomatto M, Oliviero S, Tetta C, Quesenberry PJ, Camussi G. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J Am Soc Nephrol. 2015;26:2349–2360. doi: 10.1681/ASN.2014070710. - DOI - PMC - PubMed
    1. Giuseppina T, Rosaria T, Gabriella S, Fabiana G. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol. 2014;306:621–633. doi: 10.1152/ajpcell.00228.2013. - DOI - PubMed

Publication types