Creating reproducible pharmacogenomic analysis pipelines
- PMID: 31481707
- PMCID: PMC6722117
- DOI: 10.1038/s41597-019-0174-7
Creating reproducible pharmacogenomic analysis pipelines
Abstract
The field of pharmacogenomics presents great challenges for researchers that are willing to make their studies reproducible and shareable. This is attributed to the generation of large volumes of high-throughput multimodal data, and the lack of standardized workflows that are robust, scalable, and flexible to perform large-scale analyses. To address this issue, we developed pharmacogenomic workflows in the Common Workflow Language to process two breast cancer datasets in a reproducible and transparent manner. Our pipelines combine both pharmacological and molecular profiles into a portable data object that can be used for future analyses in cancer research. Our data objects and workflows are shared on Harvard Dataverse and Code Ocean where they have been assigned a unique Digital Object Identifier, providing a level of data provenance and a persistent location to access and share our data with the community.
Conflict of interest statement
The authors declare no competing interests.
Figures



Similar articles
-
Scalable Workflows and Reproducible Data Analysis for Genomics.Methods Mol Biol. 2019;1910:723-745. doi: 10.1007/978-1-4939-9074-0_24. Methods Mol Biol. 2019. PMID: 31278683 Free PMC article.
-
Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managers.Nat Methods. 2021 Oct;18(10):1161-1168. doi: 10.1038/s41592-021-01254-9. Epub 2021 Sep 23. Nat Methods. 2021. PMID: 34556866 Review.
-
Tibanna: software for scalable execution of portable pipelines on the cloud.Bioinformatics. 2019 Nov 1;35(21):4424-4426. doi: 10.1093/bioinformatics/btz379. Bioinformatics. 2019. PMID: 31077294 Free PMC article.
-
Sharing interoperable workflow provenance: A review of best practices and their practical application in CWLProv.Gigascience. 2019 Nov 1;8(11):giz095. doi: 10.1093/gigascience/giz095. Gigascience. 2019. PMID: 31675414 Free PMC article.
-
A bioinformatics workflow to decipher transcriptomic data from vitamin D studies.J Steroid Biochem Mol Biol. 2019 May;189:28-35. doi: 10.1016/j.jsbmb.2019.01.003. Epub 2019 Feb 1. J Steroid Biochem Mol Biol. 2019. PMID: 30716464 Review.
Cited by
-
Computational Modeling of Drug Response Identifies Mutant-Specific Constraints for Dosing panRAF and MEK Inhibitors in Melanoma.Cancers (Basel). 2024 Aug 22;16(16):2914. doi: 10.3390/cancers16162914. Cancers (Basel). 2024. PMID: 39199684 Free PMC article.
-
Lightweight Distributed Provenance Model for Complex Real-world Environments.Sci Data. 2022 Aug 17;9(1):503. doi: 10.1038/s41597-022-01537-6. Sci Data. 2022. PMID: 35977957 Free PMC article.
-
Data platforms for open life sciences-A systematic analysis of management instruments.PLoS One. 2022 Oct 25;17(10):e0276204. doi: 10.1371/journal.pone.0276204. eCollection 2022. PLoS One. 2022. PMID: 36282849 Free PMC article.
-
Toward a common standard for data and specimen provenance in life sciences.Learn Health Syst. 2023 Apr 18;8(1):e10365. doi: 10.1002/lrh2.10365. eCollection 2024 Jan. Learn Health Syst. 2023. PMID: 38249839 Free PMC article.
-
Computational modeling of drug response identifies mutant-specific constraints for dosing panRAF and MEK inhibitors in melanoma.bioRxiv [Preprint]. 2024 Aug 6:2024.08.02.606432. doi: 10.1101/2024.08.02.606432. bioRxiv. 2024. Update in: Cancers (Basel). 2024 Aug 22;16(16):2914. doi: 10.3390/cancers16162914. PMID: 39149377 Free PMC article. Updated. Preprint.
References
-
- Sivarajah U, Kamal MM, Irani Z, Weerakkody V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017;70:263–286. doi: 10.1016/j.jbusres.2016.08.001. - DOI
-
- Oussous A, Benjelloun F-Z, Ait Lahcen A, Belfkih S. Big Data technologies: A survey. Journal of King Saud University - Computer and Information Sciences. 2018;30:431–448. doi: 10.1016/j.jksuci.2017.06.001. - DOI
-
- Xu Z, Shi Y. Exploring Big Data Analysis: Fundamental Scientific Problems. Annals of Data Science. 2015;2:363–372. doi: 10.1007/s40745-015-0063-7. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources