Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 20:10:1978.
doi: 10.3389/fimmu.2019.01978. eCollection 2019.

Galloyl - Hexahydroxydiphenoyl (HHDP)-Glucose Isolated From Punica granatum L. Leaves Protects Against Lipopolysaccharide (LPS)-Induced Acute Lung Injury in BALB/c Mice

Affiliations

Galloyl - Hexahydroxydiphenoyl (HHDP)-Glucose Isolated From Punica granatum L. Leaves Protects Against Lipopolysaccharide (LPS)-Induced Acute Lung Injury in BALB/c Mice

Aruanã Joaquim Matheus Costa Rodrigues Pinheiro et al. Front Immunol. .

Erratum in

Abstract

The hydroalcoholic extract and ethyl acetate fraction of Punica granatum leaves have been known to exhibit anti-inflammatory activities. In this study, we investigated the therapeutic effects of galloyl-hexahydroxydiphenoyl (HHDP)-glucose isolated from pomegranate leaves on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Male BALB/c mice were treated with different doses of galloyl-HHDP-glucose (5, 50, and 100 mg/Kg) or dexamethasone at 5 mg/Kg (per os) 6 h after intra-tracheal instillation of LPS. Vehicle-treated mice were used as controls. Twenty-four hours after LPS challenge, bronchoalveolar lavage fluid (BALF), and lung samples were collected for analyses. They were evaluated by monitoring the expression of NF-κB, JNK, and cytokine genes and proteins, as well as cell migration and lung function. All doses of galloyl-HHDP-glucose inhibited LPS-induced JNK and NF-κB activation. Likewise, the galloyl-HHDP-glucose-treated animals presented reduced expression of the TNF-α, IL-6, and IL-1β genes in the lungs and reduced TNF-α, IL-6, IL-1β, and IL-8 protein levels when compared with the vehicle-treated LPS-challenged mice. In addition, the ALI mice treated with galloyl-HHDP-glucose also presented reduced lung inflammatory cell accumulation, especially that of neutrophils, in their BALF and lungs. In addition, galloyl-HHDP-glucose treatment markedly ameliorated the LPS-induced pulmonary mechanism complications and attenuated weight loss. Overall, we showed for the first time that galloyl-HHDP-glucose protects against ALI, and may be useful for treating ALI and other inflammatory disorders.

Keywords: acute lung injury; anti-inflammatory effects; cytokines; galloyl-HHDP-glucose; leukocytes; pomegranate.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structure of galloyl-HHDP-glucose isolated from the hydroalcoholic extract of Punica granatum L.
Figure 2
Figure 2
Effects of galloyl-HHDP-glucose treatments on the activation of NF-κB (A) and JNK (B) in the lungs of BALB/c mice. BALB/c mice were randomly allocated to 6 groups (n = 4/group). Mice received galloyl-HHDP-glucose (5, 50, and 100 mg/kg; p.o), dexamethasone (DEXA; 5 mg/kg; p.o), or vehicle (PBS, 10 mL/kg; p.o). The results were calculated as % increase relative to that in the control. β-actin was used as a constitutive protein. The values are presented as median and interquartile. Significances were calculated by Kruskal–Wallis followed by Dunn multiple comparison test analysis of the groups vs. saline-injected non-treated mice (*p < 0.05) and vs. lipopolysaccharide (LPS)-installed non-treated mice (#p < 0.05). The gel is representative of results that were obtained in an experiment repeated four times.
Figure 3
Figure 3
Effects of galloyl-HHDP-glucose treatment on TNF-α (A), IL-1β (B), IL-6 (C), and IL-10 (D) gene expression in isolated lung tissues of BALB/c mice. BALB/c mice were randomly allocated to 6 groups (n = 6/group). Mice received galloyl-HHDP-glucose (5, 50, and 100 mg/kg; p.o), dexamethasone (DEXA; 5 mg/kg; p.o), or vehicle (PBS; p.o). The values are presented as median and interquartile range. Significances were calculated by Kruskal–Wallis followed by Dunn multiple comparison test analysis of the groups vs. saline-injected non-treated mice (*p < 0.05) and vs. lipopolysaccharide (LPS)-installed non-treated mice (#p < 0.05).
Figure 4
Figure 4
Effects of galloyl-HHDP-glucose treatments on TNF-α (A), IL-1β (B), IL-8 (C), IL-6 (D), and IL-10 (E) levels in homogenized isolated lung tissues of BALB/c mice. BALB/c mice were randomly allocated to 6 groups (n = 6/group). Mice received galloyl-HHDP-glucose (5, 50, and 100 mg/kg; p.o), dexamethasone (DEXA; 5 mg/kg; p.o), or vehicle (PBS; p.o). The values are presented as median and interquartile. Significances were calculated by Kruskal–Wallis followed by Dunn multiple comparison test analysis of the groups vs. saline-injected non-treated mice (*p < 0.05) and vs. lipopolysaccharide (LPS)-installed non-treated mice (#p < 0.05).
Figure 5
Figure 5
Analyses of body weights of mice. (A) Effects of galloyl-HHDP-glucose treatment on the total number of leukocytes (B), neutrophils (C), or macrophages (D) in bronchoalveolar lavage fluid (BALF), and total proteins in lung (E). BALB/c mice were randomly allocated to 6 groups (n = 6/group). Mice received galloyl-HHDP-glucose (5, 50, and 100 mg/kg; p.o), dexamethasone (DEXA; 5 mg/kg; p.o), or vehicle (PBS; p.o). The values are presented as mean and SD. Significances were calculated by One-way ANOVA followed by Tukey test analysis of the groups vs. saline-injected non-treated mice (*p < 0.05) and vs. lipopolysaccharide (LPS)-installed non-treated mice (#p < 0.05).
Figure 6
Figure 6
Effect of galloyl-HHDP-glucose treatment on leukocyte accumulation in the lungs of mice treated with saline-injected non-treated mice (A), lipopolysaccharide (LPS)-installed non-treated mice (B), 5 mg/kg galloyl-HHDP-glucose and LPS (C), 50 mg/kg galloyl-HHDP-glucose and LPS (D), 100 mg/kg galloyl-HHDP-glucose and LPS (E), 5 mg/kg dexamethasone and LPS (F), and total cells in lung (G). Black arrows: bronchiolar inflammatory cell infiltrates. Sections (4 μm) were stained with hematoxylin and eosin, and viewed with a microscope at 100x and 400x magnification respectively. Significances were calculated by One-way ANOVA followed by Tukey test analysis of the groups vs. saline-injected non-treated mice (*p < 0.05) and vs. lipopolysaccharide (LPS)-installed non-treated mice (#p < 0.05).
Figure 7
Figure 7
Efficacy of galloyl-HHDP-glucose treatments in reducing respiratory system and lung tissue elastance in lipopolysaccharide (LPS)-induced ALI mice. The respiratory system resistance (Rrs) and elastance (Ers), tissue damping (Gtis) and elastance (Htis), and airway resistance (Raw) (A–E). The mice received different doses of galloyl-HHDP-glucose (5, 50, and 100 mg/kg) 6 h after intra-tracheal instillation of LPS. The values are presented as mean and SD. Significances were calculated by One-way ANOVA followed by Tukey test. Significances were calculated by One-way ANOVA followed by Tukey test analysis of the groups vs. saline-injected non-treated mice (*p < 0.05) and vs. lipopolysaccharide (LPS)-installed non-treated mice (#p < 0.05).
Figure 8
Figure 8
Effect of Galloyl-HHDP-glucose for cell viability of RAW 264.7 cells. Results are expressed as means followed by standard deviation of three independent experiments performed in triplicate. (*) indicates statistically significant different compared to control group by Kruskal–Wallis followed by Dunn multiple comparison test analysis.

Similar articles

Cited by

References

    1. Fan E, Brodie D, Slutsky A. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. (2018) 319:698–710. 10.1001/jama.2017.21907 - DOI - PubMed
    1. Sahetya S, Goligher E, Brower R. Fifty years of research in ARDS. Setting positive end-expiratory pressure in the acute respiratory distress syndrome. Am J Respir Crit Care Med. (2017) 195:1429–38. 10.1164/rccm.201610-2035CI - DOI - PMC - PubMed
    1. Liu T, Zhang L, Joo D, Sun S. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. (2017) 2:17023. 10.1038/sigtrans.2017.23 - DOI - PMC - PubMed
    1. Bittencourt-Mernak M, Pinheiro N, Santana F, Guerreiro M, Saraiva-Romanholo B, Grecco S, et al. . Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. (2017) 312:L217–30. 10.1152/ajplung.00444.2015 - DOI - PubMed
    1. Han S, Mallampalli R. The acute respiratory distress syndrome: from mechanism to translation. J Immunol. (2015) 194:855–60. 10.4049/jimmunol.1402513 - DOI - PMC - PubMed

Publication types