MetaTOR: A Computational Pipeline to Recover High-Quality Metagenomic Bins From Mammalian Gut Proximity-Ligation (meta3C) Libraries
- PMID: 31481973
- PMCID: PMC6710406
- DOI: 10.3389/fgene.2019.00753
MetaTOR: A Computational Pipeline to Recover High-Quality Metagenomic Bins From Mammalian Gut Proximity-Ligation (meta3C) Libraries
Abstract
Characterizing the complete genomic structure of complex microbial communities would represent a key step toward the understanding of their diversity, dynamics, and evolution. Current metagenomics approaches aiming at this goal are typically done by analyzing millions of short DNA sequences directly extracted from the environment. New experimental and computational approaches are constantly sought for to improve the analysis and interpretation of such data. We developed MetaTOR, an open-source computational solution that bins DNA contigs into individual genomes according to their 3D contact frequencies. Those contacts are quantified by chromosome conformation capture experiments (3C, Hi-C), also known as proximity-ligation approaches, applied to metagenomics samples (meta3C). MetaTOR was applied on 20 meta3C libraries of mice gut microbiota. We quantified the program ability to recover high-quality metagenome-assembled genomes (MAGs) from metagenomic assemblies generated directly from the meta3C libraries. Whereas nine high-quality MAGs are identified in the 148-Mb assembly generated using a single meta3C library, MetaTOR identifies 82 high-quality MAGs in the 763-Mb assembly generated from the merged 20 meta3C libraries, corresponding to nearly a third of the total assembly. Compared to the hybrid binning softwares MetaBAT or CONCOCT, MetaTOR recovered three times more high-quality MAGs. These results underline the potential of 3C-/Hi-C-based approaches in metagenomic projects.
Keywords: Hi-C; binning algorithm; gut microbiome; metagenome-assembled genomes; metagenomic analysis; metagenomics Hi-C; metagenomics binning.
Figures




Similar articles
-
Metagenomes Binning Using Proximity-Ligation Data.Methods Mol Biol. 2022;2301:163-181. doi: 10.1007/978-1-0716-1390-0_8. Methods Mol Biol. 2022. PMID: 34415535
-
Generation of a Metagenomics Proximity Ligation 3C Library of a Mammalian Gut Microbiota.Methods Enzymol. 2018;612:183-195. doi: 10.1016/bs.mie.2018.08.001. Epub 2018 Sep 18. Methods Enzymol. 2018. PMID: 30502941
-
Novel canine high-quality metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read metagenomics together with Hi-C proximity ligation.Microb Genom. 2022 Mar;8(3):000802. doi: 10.1099/mgen.0.000802. Microb Genom. 2022. PMID: 35298370 Free PMC article.
-
Application of computational approaches to analyze metagenomic data.J Microbiol. 2021 Mar;59(3):233-241. doi: 10.1007/s12275-021-0632-8. Epub 2021 Feb 10. J Microbiol. 2021. PMID: 33565054 Review.
-
Recovering complete and draft population genomes from metagenome datasets.Microbiome. 2016 Mar 8;4:8. doi: 10.1186/s40168-016-0154-5. Microbiome. 2016. PMID: 26951112 Free PMC article. Review.
Cited by
-
Introduction to the principles and methods underlying the recovery of metagenome-assembled genomes from metagenomic data.Microbiologyopen. 2022 Jun;11(3):e1298. doi: 10.1002/mbo3.1298. Microbiologyopen. 2022. PMID: 35765182 Free PMC article. Review.
-
MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data.Nat Commun. 2023 Oct 6;14(1):6231. doi: 10.1038/s41467-023-41209-6. Nat Commun. 2023. PMID: 37802989 Free PMC article.
-
Accurate and complete genomes from metagenomes.Genome Res. 2020 Mar;30(3):315-333. doi: 10.1101/gr.258640.119. Epub 2020 Mar 18. Genome Res. 2020. PMID: 32188701 Free PMC article. Review.
-
Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in Southeast Asians.Nat Commun. 2022 Oct 13;13(1):6044. doi: 10.1038/s41467-022-33782-z. Nat Commun. 2022. PMID: 36229545 Free PMC article.
-
ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data.Nat Commun. 2023 Jan 31;14(1):502. doi: 10.1038/s41467-023-35945-y. Nat Commun. 2023. PMID: 36720887 Free PMC article.
References
-
- Blondel V. D., Guillaume J.-L., Lambiotte R., Lefebvre E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. Theory E (10), P10008. 10.1088/1742-5468/2008/10/P10008 - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous