Structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene: a first-principle study
- PMID: 31482214
- DOI: 10.1007/s00894-019-4187-0
Structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene: a first-principle study
Abstract
The structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene (J-GN) have been studied using first-principle DFT calculations. The band structure and density of states have been discussed. The values of 16 parameters have been calculated for the most stable chair (C) structure of hydrochlorinated J-GN. Out of sixteen, 12 parameters such as static dielectric constant ε(0), refractive index n(0), birefringence Δn(0), threshold conductivity σ(ω), plasmon energy (ћωp), binding energy (Eb), cohesive energy (Ec), enthalpy (E), entropy (S), free energy (F), heat capacity (Cp), and Debye temperature (ΘD) have been calculated for the first time. The structural and electronic properties have also been studied at 0-GPa, 25-GPa, 35-GPa, 50-GPa, 90-GPa, 100-GPa, 150-GPa, 200-GPa, and 220-GPa external pressures. The hydrochlorinated J-GN shows the direct band gap behavior up to 35 GPa and becomes indirect band gap after 35 GPa. Further, it shows a stable structure up to 90 GPa and becomes unstable at 100-GPa external pressure. The calculated values of all parameters agree well with the available reported values of some parameters at 0 GPa.
Keywords: First-principle calculations; Hydrochlorinated Janus graphene; Optical properties; Structural properties; Thermodynamic properties.
References
LinkOut - more resources
Full Text Sources
Miscellaneous