Modular Approach to Degradable Acetal Polymers Using Cascade Enyne Metathesis Polymerization
- PMID: 31487416
- PMCID: PMC7265103
- DOI: 10.1002/anie.201909172
Modular Approach to Degradable Acetal Polymers Using Cascade Enyne Metathesis Polymerization
Abstract
A modular synthetic approach to degradable metathesis polymers is presented using acetal-containing enyne monomers. The monomers are prepared in a short and divergent synthetic sequence that features two points of modification to tune polymerization behavior and introduce molecular cargo. Steric and stereochemical elements are critical in the monomer design in order to provide rapid and living polymerizations capable of generating block polymers. The developed polyacetal materials readily undergo pH-dependent degradation in aqueous mixtures, and the rate of hydrolysis can be tuned through post-polymerization modification with triazolinedione click chemistry. This presents a new scaffold for responsive metathesis polymers that may find use in applications that requires controllable breakdown and release of small molecules.
Keywords: acetal; degradable polymer; enyne monomers; living polymerization; metathesis polymerization.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures






Similar articles
-
Controlled Living Cascade Polymerization of Polycyclic Enyne Monomers: Leveraging Complete Degradability for a Stereochemical and Structural Investigation.J Am Chem Soc. 2022 Aug 31;144(34):15643-15652. doi: 10.1021/jacs.2c05721. Epub 2022 Aug 12. J Am Chem Soc. 2022. PMID: 35960252
-
Degradable polymers via olefin metathesis polymerization.Prog Polym Sci. 2021 Sep;120:101427. doi: 10.1016/j.progpolymsci.2021.101427. Epub 2021 Jun 7. Prog Polym Sci. 2021. PMID: 38666185 Free PMC article.
-
Relay Conjugation of Living Metathesis Polymers.J Am Chem Soc. 2018 Sep 26;140(38):12181-12188. doi: 10.1021/jacs.8b07315. Epub 2018 Sep 11. J Am Chem Soc. 2018. PMID: 30160479
-
Acetal-Based Functional Epoxide Monomers: Polymerizations and Applications.Macromol Biosci. 2021 Nov;21(11):e2100251. doi: 10.1002/mabi.202100251. Epub 2021 Aug 8. Macromol Biosci. 2021. PMID: 34369084 Review.
-
Ring-Opening Polymerization of Cyclic Acetals: Strategy for both Recyclable and Degradable Materials.Macromol Rapid Commun. 2023 Jul;44(13):e2300099. doi: 10.1002/marc.202300099. Epub 2023 Apr 14. Macromol Rapid Commun. 2023. PMID: 37020406 Review.
Cited by
-
Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics.Adv Sci (Weinh). 2021 Jul;8(14):e2101233. doi: 10.1002/advs.202101233. Epub 2021 May 20. Adv Sci (Weinh). 2021. PMID: 34014619 Free PMC article. Review.
-
Development of Bioorthogonally Degradable Tough Hydrogels Using Enamine N-Oxide Based Crosslinkers.Adv Mater. 2025 Apr;37(13):e2414692. doi: 10.1002/adma.202414692. Epub 2025 Feb 28. Adv Mater. 2025. PMID: 40018818 Free PMC article.
-
Degradable Polyphosphoramidate via Ring-Opening Metathesis Polymerization.ACS Macro Lett. 2020 Oct 20;9(10):1417-1422. doi: 10.1021/acsmacrolett.0c00401. Epub 2020 Sep 15. ACS Macro Lett. 2020. PMID: 35653670 Free PMC article.
-
Cascade Alternating Metathesis Cyclopolymerization of Diynes and Dihydrofuran.ACS Macro Lett. 2022 May 17;11(5):630-635. doi: 10.1021/acsmacrolett.2c00140. Epub 2022 Apr 18. ACS Macro Lett. 2022. PMID: 35570817 Free PMC article.
-
Biodegradable Elastomers and Gels for Elastic Electronics.Adv Sci (Weinh). 2022 May;9(13):e2105146. doi: 10.1002/advs.202105146. Epub 2022 Feb 25. Adv Sci (Weinh). 2022. PMID: 35212474 Free PMC article. Review.
References
-
- Leitgeb A, Wappel J, Slugovc C, Polymer 2010, 51, 2927–2946.
-
- Smith D, Pentzer EB, Nguyen ST, Polym. Rev 2007, 47, 419–459
- Kanai M, Mortell KH, Kiessling LL, J. Am. Chem. Soc 1997, 119, 9931–9932
- Pohl NL, Kiessling LL, Synthesis 1999, 1999, 1515–1519
- Kammeyer JK, Blum AP, Adamiak L, Hahn ME, Gianneschi NC, Polym. Chem 2013, 4, 3929–3933 - PMC - PubMed
- James CR, Rush AM, Insley T, Vuković L, Adamiak L, Král P, Gianneschi NC, J. Am. Chem. Soc 2014, 136, 11216–11219 - PMC - PubMed
- Adamiak L, Touve MA, LeGuyader CLM, Gianneschi NC, ACS Nano 2017, 11, 9877–9888 - PubMed
- Lienkamp K, Madkour AE, Musante A, Nelson CF, Nüsslein K, Tew GN, J. Am. Chem. Soc 2008, 130, 9836–9843 - PMC - PubMed
- Isarov SA, Pokorski JK, ACS Macro Lett. 2015, 4, 969–973. - PubMed
-
- Atallah P, Wagener KB, Schulz MD, Macromolecules 2013, 46, 4735–4741
- Fokou PA, Meier MAR, J. Am. Chem. Soc 2009, 131, 1664–1665 - PubMed
- Lv A, Cui Y, Du F-S, Li Z-C, Macromolecules 2016, 49, 8449–8458
- Mutlu H, Barner-Kowollik C, Polym. Chem 2016, 7, 2272–2279
- Parkhurst RR, Balog S, Weder C, Simon YC, RSC Adv. 2014, 4, 53967–53974
- Khaja SD, Lee S, Murthy N, Biomacromolecules 2007, 8, 1391–1395. - PubMed
-
- Hodge P, Chem. Rev 2014, 114, 2278–2312. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources