Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 24;13(9):10682-10693.
doi: 10.1021/acsnano.9b05031. Epub 2019 Sep 11.

Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays

Affiliations

Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays

Alejandro Manjavacas et al. ACS Nano. .

Abstract

Periodic arrays are an exceptionally interesting arrangement for metallic nanostructures because of their ability to support collective lattice resonances. These modes, which arise from the coherent multiple scattering enabled by the lattice periodicity, give rise to very strong and spectrally narrow optical responses. Here, we investigate the enhancement of the near-field produced by the lattice resonances of arrays of metallic nanoparticles when illuminated with a plane wave. We find that, for infinite arrays, this enhancement can be made arbitrarily large by appropriately designing the geometrical characteristics of the array. On the other hand, in the case of finite arrays, the near-field enhancement is limited by the number of elements of the array that interact coherently. Furthermore, we show that, as the near-field enhancement increases, the length scale over which it extends above and below the array becomes larger and its spectral linewidth narrows. We also analyze the impact that material losses have on these behaviors. As a direct application of our results, we investigate the interaction between a nanoparticle array and a dielectric slab placed a certain distance above it and show that the extraordinary near-field enhancement produced by the lattice resonance can lead to very strong interactions, even at significantly large separations. This work provides a detailed characterization of the limits of the near-field produced by lattice resonances and, therefore, advances our knowledge of the optical response of periodic arrays of nanostructures, which can be used to design and develop applications exploiting the extraordinary properties of these systems.

Keywords: lattice resonances; nanoparticle arrays; near-field enhancement; periodic arrays; plasmonic crystals; plasmons.

PubMed Disclaimer

LinkOut - more resources