Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 6;16(18):3275.
doi: 10.3390/ijerph16183275.

Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital

Affiliations

Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital

Cristián Castillo-Olea et al. Int J Environ Res Public Health. .

Abstract

This paper presents a study based on data analysis of the sarcopenia level in older adults. Sarcopenia is a prevalent pathology in adults of around 50 years of age, whereby the muscle mass decreases by 1 to 2% a year, and muscle strength experiences an annual decrease of 1.5% between 50 and 60 years of age, subsequently increasing by 3% each year. The World Health Organisation estimates that 5-13% of individuals of between 60 and 70 years of age and 11-50% of persons of 80 years of age or over have sarcopenia. This study was conducted with 166 patients and 99 variables. Demographic data was compiled including age, gender, place of residence, schooling, marital status, level of education, income, profession, and financial support from the State of Baja California, and biochemical parameters such as glycemia, cholesterolemia, and triglyceridemia were determined. A total of 166 patients took part in the study, with an average age of 77.24 years. The purpose of the study was to provide an automatic classifier of sarcopenia level in older adults using artificial intelligence in addition to identifying the weight of each variable used in the study. We used machine learning techniques in this work, in which 10 classifiers were employed to assess the variables and determine which would provide the best results, namely, Nearest Neighbors (3), Linear SVM (Support Vector Machines) (C = 0.025), RBF (Radial Basis Function) SVM (gamma = 2, C = 1), Gaussian Process (RBF (1.0)), Decision Tree (max_depth = 3), Random Forest (max_depth=3, n_estimators = 10), MPL (Multilayer Perceptron) (alpha = 1), AdaBoost, Gaussian Naive Bayes, and QDA (Quadratic Discriminant Analysis). Feature selection determined by the mean for the variable ranking suggests that Age, Systolic Arterial Hypertension (HAS), Mini Nutritional Assessment (MNA), Number of chronic diseases (ECNumber), and Sodium are the five most important variables in determining the sarcopenia level, and are thus of great importance prior to establishing any treatment or preventive measure. Analysis of the relationships existing between the presence of the variables and classifiers used in moderate and severe sarcopenia revealed that the sarcopenia level using the RBF SVM classifier with Age, HAS, MNA, ECNumber, and Sodium variables has 82'5 accuracy, a 90'2 F1, and 82'8 precision.

Keywords: diagnosis; machine learning; sarcopenia.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Variable ranking.

Similar articles

Cited by

References

    1. Goodpaster B.H., Park S.W., Harris T.B., Kritchevsky S.B., Nevitt M., Schwartz A.V., Simonsick E.M., Tylavsky F.A., Visser M., Newman A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006;61:1059–1064. doi: 10.1093/gerona/61.10.1059. - DOI - PubMed
    1. Evans W.J. What Is Sarcopenia? Gerontol. Ser. A. 1995;50A:5–8. doi: 10.1093/gerona/50A.Special_Issue.5. - DOI - PubMed
    1. Espinel-Bermudez M., Sanchez-Garcia S., Garcia-Peña C., Trujillo X., Huerta-Viera M., Granados-Garcia V., Hernández-González S., Arias-Merino E.D. Associated factors with sarcopenia among Mexican elderly: 2012 National Health and Nutrition Survey. Rev. Med. Inst. Mex. Seguro Soc. 2018;56:46–53. - PubMed
    1. Deutz N.E.P., Ashurst I., Ballesteros M.D., Bear D.E., Cruz-Jentoft A.J., Genton L., Landi F., Laviano A., Norman K., Prado C.M. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J. Am. Med. Dir. Assoc. 2019;1:22–27. doi: 10.1016/j.jamda.2018.11.021. - DOI - PubMed
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Michel J.P., Landi F., Martin F.C., Rolland Y., Schneider S.M., et al. Sarcopenia: Consenso europeo sobre su definición y diagnóstico informe del grupo europeo de trabajo sobre la sarcopenia en personas de edad avanzada. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034. - DOI - PMC - PubMed

Publication types

LinkOut - more resources