Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 30:570:118657.
doi: 10.1016/j.ijpharm.2019.118657. Epub 2019 Sep 3.

Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation

Affiliations

Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation

Osama A A Ahmed et al. Int J Pharm. .

Abstract

Avanafil (AVA) is a recent FDA approved selective phosphodiesterase type 5 inhibitor used for oral treatment of erectile dysfunction. The oral bioavailability of the drug is challenged by its reduced water solubility, considerable presystemic metabolism, and altered absorption in the presence of food. Accordingly, this work aimed to surmount the aforementioned challenges through the development of optimized nanosized AVA invasomes with enhanced transdermal delivery. AVA invasomes were prepared according to a Box-Behnken experimental design to explore the impact of the following formulation factors: phospholipid % (X1), ethanol % (X2), terpene % (X3), and terpene type (X4) on vesicle size (Y1) and entrapment efficiency (Y2). The three numerical variables were used at three levels, while the categorical variable was used at two levels. The optimized formulation with vesicular size of 109.92 nm and entrapment efficiency of 96.98% was incorporated into a hydroxypropyl methyl cellulose-based transdermal film and characterized for its ex vivo permeation behavior and in vivo performance in rats. The optimized AVA invasomal film showed enhanced ex vivo permeation with an enhancement factor of 2.514 and a more than four-fold increase in relative bioavailability compared to the raw AVA film. These results provide insight into the capability of the optimized invasomal film to enhance the transdermal permeation and bioavailability of AVA.

Keywords: Avanafil; Ex vivo; Invasomes; Pharmacokinetics; Terpenes; Transdermal.

PubMed Disclaimer

MeSH terms

LinkOut - more resources