Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov:92:103216.
doi: 10.1016/j.bioorg.2019.103216. Epub 2019 Aug 23.

Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs

Affiliations

Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs

Gulraiz Ahmad et al. Bioorg Chem. 2019 Nov.

Abstract

In our current research, a diverse effect of acetylcholinesterase inhibitors was studied on BALB-C mice by using pentylenetetrazole (PTZ) seizure model. A series of carboxamide analogs (4a-4i) have been synthesized via Suzuki coupling reaction in moderate to good yields (35-84%). To study the efficacy of the synthesized compounds against AD, in-vitro inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was performed. A number of compounds showed inhibition in low micromolar range. Subsequently, these compounds were evaluated for anticonvulsive effects in BALB-C mice by using pentylenetetrazole (PTZ) seizure model. The compound 4e displayed potential anticonvulsive effect and displayed 50% and 80% protection from mortality at the dose of 10 mg/kg, and 30 mg/kg respectively. The compound 4h showed some protection (33%) from mortality at 10 mg/kg and was not further explored based on non-significant delay in onset of myoclonic seizures. While, other compounds from the series did not show any anticonvulsive activity. To rationalize the observed biological activity, we performed docking studies against AChE and BChE targets. To explore the rationale of the mechanism of in-vivo anticonvulsant activity, docking studies were performed on GABAergic receptors. Moreover, in order to establish a relationship between physiochemical data of the synthesized compounds and their in-vivo performance, we employed in-silico pharmacokinetic predictions. Our in-silico predictions suggest that the plasma protein binding, low to moderate blood brain barrier penetration and low solubility are the main attributes of low in-vivo performance.

Keywords: Anticonvulsive; Carboxamides; Cholinesterases; In vivo; Pentylenetetrazole; Suzuki coupling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources