Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Oct:241:153035.
doi: 10.1016/j.jplph.2019.153035. Epub 2019 Aug 27.

Cyclic nucleotide gated channels (CNGCs) in plant signalling-Current knowledge and perspectives

Affiliations
Review

Cyclic nucleotide gated channels (CNGCs) in plant signalling-Current knowledge and perspectives

Maria Duszyn et al. J Plant Physiol. 2019 Oct.

Abstract

Cell signaling is an evolutionarily conserved mechanism that responds and adapts to various internal and external factors. Generally, a signal is mediated by various signaling molecules and is transferred to a cascade of effector proteins. To date, there is significant evidence that cyclic nucleotides (cNMPs), e.g., adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP), may represent important elements of many signaling pathways in plants. However, in contrast to the impressive progress made in understanding cyclic nucleotide signaling in mammalian hosts, only few studies have investigated this topic in plants. Existing evidence indicates that cNMPs participate in growth and developmental processes, as well as the response to various stresses. Once synthesized by adenylyl or guanylyl cyclases, these signals are transduced by acting through a number of cellular effectors. The regulatory effects of cNMPs in eukaryotes can be mediated via various downstream effector proteins, such as protein kinases, Exchange Protein directly Activated by cAMP (EPAC), and Cyclic Nucleotide-Gated ion Channels (CNGC). These proteins sense changes in intracellular cNMP levels and regulate numerous cellular responses. Moreover, the amplitude of cNMP levels and the duration of its signal in the cell is also governed by phosphodiesterases (PDEs), enzymes that are responsible for the breakdown of cNMPs. Data collected in recent years strongly suggest that cyclic nucleotide gated channels are the main cNMP effectors in plant cells. These channels are important cellular switches that transduce changes in intracellular concentrations of cyclic nucleotides into changes in membrane potential and ion concentrations. Structurally, these channels belong to the superfamily of pore-loop cation channels. In this review, we provide an overview of the molecular properties of CNGC structure, regulation and ion selectivity, and subcellular localization, as well as describing the signal transduction pathways in which these channels are involved. We will also summarize recent insights into the role of CNGC proteins in plant growth, development and response to stressors.

Keywords: CNGC; Cyclic AMP; Cyclic GMP; Cyclic nucleotide gated channels; Ion homeostasis; Plants.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources