Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 18;31(50):504004.
doi: 10.1088/1361-648X/ab4235.

Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer

Affiliations

Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer

P K Bera et al. J Phys Condens Matter. .

Abstract

We investigate the response of the two-dimensional (2D) continuous non-particulate film of surfactant sorbitan tristearate confined at the air-water interface under oscillatory shear deformation. The time dependence of various rheological parameters show critical-like behavior at a value of strain amplitude close to the crossover point of elastic ([Formula: see text]) and viscous ([Formula: see text]) shear moduli. Imposing oscillatory shear of different strain amplitudes ([Formula: see text]) above and below the crossover strain amplitude ([Formula: see text]) over a large number of cycles, we quantify the temporal dependence of interfacial viscous modulus, phase angle ([Formula: see text]) as well as higher harmonic components of stress. The number of shear cycles ([Formula: see text]) required for these quantities to reach the steady state value diverges near [Formula: see text]. The steady state values of the third harmonic ([Formula: see text]) show order parameter like behavior indicating the importance of higher order harmonics near the nonequilibrium transition. We further show that the energy dissipation per cycle per unit volume has a marked change near [Formula: see text], consistent with continuum level nonequilibrium shear-transformation-zone model of amorphous viscoplasticity.

PubMed Disclaimer

LinkOut - more resources