Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer
- PMID: 31491774
- DOI: 10.1088/1361-648X/ab4235
Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer
Abstract
We investigate the response of the two-dimensional (2D) continuous non-particulate film of surfactant sorbitan tristearate confined at the air-water interface under oscillatory shear deformation. The time dependence of various rheological parameters show critical-like behavior at a value of strain amplitude close to the crossover point of elastic ([Formula: see text]) and viscous ([Formula: see text]) shear moduli. Imposing oscillatory shear of different strain amplitudes ([Formula: see text]) above and below the crossover strain amplitude ([Formula: see text]) over a large number of cycles, we quantify the temporal dependence of interfacial viscous modulus, phase angle ([Formula: see text]) as well as higher harmonic components of stress. The number of shear cycles ([Formula: see text]) required for these quantities to reach the steady state value diverges near [Formula: see text]. The steady state values of the third harmonic ([Formula: see text]) show order parameter like behavior indicating the importance of higher order harmonics near the nonequilibrium transition. We further show that the energy dissipation per cycle per unit volume has a marked change near [Formula: see text], consistent with continuum level nonequilibrium shear-transformation-zone model of amorphous viscoplasticity.
LinkOut - more resources
Full Text Sources