Validated inference of smoking habits from blood with a finite DNA methylation marker set
- PMID: 31494793
- PMCID: PMC6861351
- DOI: 10.1007/s10654-019-00555-w
Validated inference of smoking habits from blood with a finite DNA methylation marker set
Abstract
Inferring a person's smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an independent population-based cohort (N = 1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of current (average AUCcrossvalidation 0.925 ± 0.021, AUCexternalvalidation0.914), former (0.766 ± 0.023, 0.699) and never smoking (0.830 ± 0.019, 0.781) status, allowed inferring pack-years in current smokers (10 pack-years 0.800 ± 0.068, 0.796; 15 pack-years 0.767 ± 0.102, 0.752) and inferring smoking cessation time in former smokers (5 years 0.774 ± 0.024, 0.760; 10 years 0.766 ± 0.033, 0.764; 15 years 0.767 ± 0.020, 0.754). Model application to children revealed highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, N = 355; 10 years: 0.994, N = 309), suggesting prenatal and passive smoking exposure having no impact on model applications in adults. The finite set of DNA methylation markers allow accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and smoking history from blood, which we envision becoming useful in epidemiology and public health research, and in medical and forensic applications.
Keywords: DNA methylation; Epidemiology; Epigenetics; Forensics; Smoking inference.
Conflict of interest statement
H.J. Grabe has received funding from Fresenius Medical Care and speaker’s honoraria as well as travel funds from Fresenius Medical Care, Neuraxpharm and Janssen-Cilag. Other than that, the authors declared no conflict of interest.
Figures



References
MeSH terms
Substances
Grants and funding
- NWO 184.021.007/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- 529051014/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- 016.136.361/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- 184021007/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- 050-060-810/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- 633595/Horizon 2020 Framework Programme
- 733206/Horizon 2020 Framework Programme
- 696295/Horizon 2020 Framework Programme
- ERC-2014-CoG-648916/H2020 European Research Council
- 603288/FP7 Science in Society
- 602736/FP7 Science in Society
- R01HD068437/National Institute of Child Health and Human Development
- 01ZZ9603/Bundesministerium für Bildung und Forschung
- 01ZZ0103/Bundesministerium für Bildung und Forschung
- 01ZZ0403/Bundesministerium für Bildung und Forschung
- 03IS2061A/Bundesministerium für Bildung und Forschung
- 81X3400104/Deutsches Zentrum für Herz- Kreislaufforschung
- 940-35-034/Netherlands Organization for Scientific Research
- 98.901/Dutch Diabetes Research Foundation
- NWO-Groot 480-15-001/674/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- 904-61-090/ZonMw
- 985-10-002/ZonMw
- 912-10-020/ZonMw
- 904-61-193/ZonMw
- 480-04-004/ZonMw
- 463-06-001/ZonMw
- 451-04-034/ZonMw
- 400-05-717/ZonMw
LinkOut - more resources
Full Text Sources