Data in support of genetic architecture of glucosinolate variations in Brassica napus
- PMID: 31497635
- PMCID: PMC6722234
- DOI: 10.1016/j.dib.2019.104402
Data in support of genetic architecture of glucosinolate variations in Brassica napus
Abstract
The transcriptome-based GWAS approach, Associative Transcriptomics (AT), which was employed to uncover the genetic basis controlling quantitative variation of glucosinolates in Brassica napus vegetative tissues is described. This article includes the phenotypic data of leaf and root glucosinolate (GSL) profiles across a diversity panel of 288 B. napus genotypes, as well as information on population structure and levels of GSLs grouped by crop types. Moreover, data on genetic associations of single nucleotide polymorphism (SNP) markers and gene expression markers (GEMs) for the major GSL types are presented in detail, while Manhattan plots and QQ plots for the associations of individual GSLs are also included. Root genetic association are supported by differential expression analysis generated from root RNA-seq. For further interpretation and details, please see the related research article entitled 'Genetic architecture of glucosinolate variation in Brassica napus' (Kittipol et al., 2019).
Keywords: Associative transcriptomics; Brassica napus; Gene expression markers; Genetic associations; Glucosinolates; Oilseed rape; Population structure; SNP markers.
Figures


Similar articles
-
Genetic architecture of glucosinolate variation in Brassica napus.J Plant Physiol. 2019 Sep;240:152988. doi: 10.1016/j.jplph.2019.06.001. Epub 2019 Jun 11. J Plant Physiol. 2019. PMID: 31255878 Free PMC article.
-
Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study.Plant Biotechnol J. 2020 Jun;18(6):1472-1484. doi: 10.1111/pbi.13314. Epub 2019 Dec 25. Plant Biotechnol J. 2020. PMID: 31820843 Free PMC article.
-
Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.Theor Appl Genet. 2015 Jul;128(7):1431-47. doi: 10.1007/s00122-015-2517-x. Epub 2015 May 1. Theor Appl Genet. 2015. PMID: 25930056
-
Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus).Genome. 2003 Jun;46(3):454-60. doi: 10.1139/g03-028. Genome. 2003. PMID: 12834062
-
Improvement of glucosinolates by metabolic engineering in Brassica crops.aBIOTECH. 2021 Aug 7;2(3):314-329. doi: 10.1007/s42994-021-00057-y. eCollection 2021 Sep. aBIOTECH. 2021. PMID: 36303883 Free PMC article. Review.
Cited by
-
Evolution and comparative transcriptome analysis of glucosinolate pathway genes in Brassica napus L.Front Plant Sci. 2024 Dec 10;15:1483635. doi: 10.3389/fpls.2024.1483635. eCollection 2024. Front Plant Sci. 2024. PMID: 39719940 Free PMC article.
-
Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.).Theor Appl Genet. 2020 Feb;133(2):479-490. doi: 10.1007/s00122-019-03479-x. Epub 2019 Dec 12. Theor Appl Genet. 2020. PMID: 31832742
-
Genetic architecture of glucosinolate variation in Brassica napus.J Plant Physiol. 2019 Sep;240:152988. doi: 10.1016/j.jplph.2019.06.001. Epub 2019 Jun 11. J Plant Physiol. 2019. PMID: 31255878 Free PMC article.
References
-
- Havlickova L., He Z., Wang L., Langer S., Harper A.L., Kaur H., Broadley M.R., Gegas V., Bancroft I. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. Plant J. 2018;93:181–192. - PMC - PubMed
-
- Harper A.L., Trick M., Higgins J., Fraser F., Clissold L., Wells R., Hattori C., Werner P., Bancroft I. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat. Biotechnol. 2012;30:798–802. - PubMed
LinkOut - more resources
Full Text Sources