Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 12;4(9):13954-13961.
doi: 10.1021/acsomega.9b01697. eCollection 2019 Aug 27.

AntimiR-155 Cyclic Peptide-PNA Conjugate: Synthesis, Cellular Uptake, and Biological Activity

Affiliations

AntimiR-155 Cyclic Peptide-PNA Conjugate: Synthesis, Cellular Uptake, and Biological Activity

Terese Soudah et al. ACS Omega. .

Abstract

Efficient delivery of nucleic acids into cells still remains a great challenge. Peptide nucleic acids (PNAs) are DNA analogues with a neutral backbone and are synthesized by solid phase peptide chemistry. This allows a straightforward synthetic route to introduce a linear short peptide (a.k.a. cell-penetrating peptide) to the PNA molecule as a means of facilitating cellular uptake of PNAs. Herein, we have devised a synthetic route in which a cyclic peptide is prepared on a solid support and is extended with the PNA molecule, where all syntheses are accomplished on the solid phase. This allows the conjugation of the cyclic peptide to the PNA molecule with the need of only one purification step after the cyclic peptide-PNA conjugate (C9-PNA) is cleaved from the solid support. The PNA sequence chosen is an antimiR-155 molecule that is complementary to mature miR-155, a well-established oncogenic miRNA. By labeling C9-PNA with fluorescein isothiocyanate, we observe efficient cellular uptake into glioblastoma cells (U87MG) at a low concentration (0.5 μM), as corroborated by fluorescence-activated cell sorting (FACS) analysis and confocal microscopy. FACS analysis also suggests an uptake mechanism that is energy-dependent. Finally, the antimiR activity of C9-PNA was shown by analyzing miR155 levels by quantitative reverse transcription polymerase chain reaction and by observing a reduction in cell viability and proliferation in U87MG cells, as corroborated by XTT and colony formation assays. Given the added biological stability of cyclic versus linear peptides, this synthetic approach may be a useful and straightforward approach to synthesize cyclic peptide-PNA conjugates.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Solid-Phase Synthesis of C9–PNAs
Figure 1
Figure 1
miR-155 expression following incubation of PNA conjugates (0.5 μM) in U87MG cells for 24 h at 37 °C. miR-155 is shown in comparison to scrambled PNA controls. **P value < 0.01.
Figure 2
Figure 2
Cell viability for U87GM cells and THSCs cells as determined by the XTT assay. (a) U87GM cells were treated with 1 μM PNA conjugates for 72 h at 37 °C (in triplicates in 96-well plates). Viability is shown in comparison to scrambled PNA controls. *P value < 0.05, ***P value < 0.001. (b) THSCs cells were treated with 1 μM PNA conjugates for 72 h at 37 °C (in triplicates in 96-well plates). Viability is shown in comparison to scrambled PNA controls. *P value < 0.05.
Figure 3
Figure 3
C9–PNA reduces the colony survival of U87MG glioblastoma cells. Colony formation assay of cells treated with 1.0 μM of either dK4–PNA and C9–PNA or scrambled controls (dK4–PNA-Scr and C9–PNA-Scr). After 2 weeks, the plates were fixed and stained, and the colonies were counted (in triplicates). *P value < 0.05.
Figure 4
Figure 4
C9–PNA–FITC shows efficient cellular uptake into U87MG cells. (A) Confocal images of C9–PNA–FITC and dK4–PNA–FITC (at 0.5 μM) after a short incubation of 3 h at 37 °C. (B) FACS analysis of C9–PNA–FITC and dK4–PNA–FITC (at 0.5 μM) cellular uptake into U87MG cells after 2 h of incubation at 37 °C.
Figure 5
Figure 5
C9–PNA–FITC cellular uptake is energy-dependent. C9-PNA–FITC uptake into U87MG cells after a 2 h incubation (A) at 4 °C or (B) at 37 °C with 10 mM NaN3/10 mM 2-deoxy-d-glucose.
Figure 6
Figure 6
C9–PNA–FITC cellular uptake is predominantly in the cytoplasm. Confocal microscopy images of U87MG glioblastoma cells incubated with C9–PNA–FITC or dK4–PNA–FITC (at 0.5 μM) after an incubation of 3 h at 37 °C. (A) PNA–FITC alone (green); (B) overlay of PNA–FITC (green) with Lyso-Tracker Red (red) staining of lysosome (C); overlay of PNA–FITC (green) with Hoechst (blue) staining of nuclei; and (D) overlay of both stains with PNA–FITC.

Similar articles

Cited by

References

    1. Lim K. R.; Maruyama R.; Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Dev. Ther. 2017, 11, 533–545. 10.2147/dddt.s97635. - DOI - PMC - PubMed
    1. Betts C.; Saleh A. F.; Arzumanov A. A.; Hammond S. M.; Godfrey C.; Coursindel T.; Gait M. J.; Wood M. J. A. Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment. Mol. Ther. Nucleic Acids 2012, 1, e3810.1038/mtna.2012.30. - DOI - PMC - PubMed
    2. Clayton N. P.; Nelson C. A.; Weeden T.; Taylor K. M.; Moreland R. J.; Scheule R. K.; Phillips L.; Leger A. J.; Cheng S. H.; Wentworth B. M. Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease. Mol. Ther. Nucleic Acids 2014, 3, e20610.1038/mtna.2014.57. - DOI - PMC - PubMed
    3. Echigoya Y.; Nakamura A.; Nagata T.; Urasawa N.; Lim K. R. Q.; Trieu N.; Panesar D.; Kuraoka M.; Moulton H. M.; Saito T.; Aoki Y.; Iversen P.; Sazani P.; Kole R.; Maruyama R.; Partridge T.; Takeda S. i.; Yokota T. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 4213–4218. 10.1073/pnas.1613203114. - DOI - PMC - PubMed
    4. Gait M. J.; Arzumanov A. A.; McClorey G.; Godfrey C.; Betts C.; Hammond S.; Wood M. J. A. Cell-Penetrating Peptide Conjugates of Steric Blocking Oligonucleotides as Therapeutics for Neuromuscular Diseases from a Historical Perspective to Current Prospects of Treatment. Nucleic Acid Ther. 2019, 29, 1–12. 10.1089/nat.2018.0747. - DOI - PMC - PubMed
    5. Goyenvalle A.; Babbs A.; Powell D.; Kole R.; Fletcher S.; Wilton S. D.; Davies K. E. Prevention of Dystrophic Pathology in Severely Affected Dystrophin/Utrophin-deficient Mice by Morpholino-oligomer-mediated Exon-skipping. Mol. Ther. 2010, 18, 198–205. 10.1038/mt.2009.248. - DOI - PMC - PubMed
    6. Greenberg D. E.; Marshall-Batty K. R.; Brinster L. R.; Zarember K. A.; Shaw P. A.; Mellbye B. L.; Iversen P. L.; Holland S. M.; Geller B. L. Antisense Phosphorodiamidate Morpholino Oligomers Targeted to an Essential Gene Inhibit Burkholderia cepacia Complex. J. Infect. Dis. 2010, 201, 1822–1830. 10.1086/652807. - DOI - PMC - PubMed
    7. Hammond S. M.; Hazell G.; Shabanpoor F.; Saleh A. F.; Bowerman M.; Sleigh J. N.; Meijboom K. E.; Zhou H.; Muntoni F.; Talbot K.; Gait M. J.; Wood M. J. A. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 10962–10967. 10.1073/pnas.1605731113. - DOI - PMC - PubMed
    8. Jearawiriyapaisarn N.; Moulton H. M.; Buckley B.; Roberts J.; Sazani P.; Fucharoen S.; Iversen P. L.; Kole R. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol. Ther. 2008, 16, 1624–1629. 10.1038/mt.2008.120. - DOI - PMC - PubMed
    9. Jearawiriyapaisarn N.; Moulton H. M.; Sazani P.; Kole R.; Willis M. S. Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers. Cardiovasc. Res. 2010, 85, 444–453. 10.1093/cvr/cvp335. - DOI - PMC - PubMed
    10. Lai S.-H.; Stein D. A.; Guerrero-Plata A.; Liao S.-L.; Ivanciuc T.; Hong C.; Iversen P. L.; Casola A.; Garofalo R. P. Inhibition of respiratory syncytial virus infections with morpholino oligomers in cell cultures and in mice. Mol. Ther. 2008, 16, 1120–1128. 10.1038/mt.2008.81. - DOI - PMC - PubMed
    11. Lebleu B.; Moulton H. M.; Abes R.; Ivanova G. D.; Abes S.; Stein D. A.; Iversen P. L.; Arzumanov A. A.; Gait M. J. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv. Drug Delivery Rev. 2008, 60, 517–529. 10.1016/j.addr.2007.09.002. - DOI - PMC - PubMed
    12. Leger A. J.; Mosquea L. M.; Clayton N. P.; Wu I.-H.; Weeden T.; Nelson C. A.; Phillips L.; Roberts E.; Piepenhagen P. A.; Cheng S. H.; Wentworth B. M. Systemic Delivery of a Peptide-Linked Morpholino Oligonucleotide Neutralizes Mutant RNA Toxicity in a Mouse Model of Myotonic Dystrophy. Nucleic Acid Ther. 2013, 23, 109–117. 10.1089/nat.2012.0404. - DOI - PubMed
    13. Ma W.; Lin Y.; Xuan W.; Iversen P. L.; Smith L. J.; Benchimol S. Inhibition of p53 expression by peptide-conjugated phosphorodiamidate morpholino oligomers sensitizes human cancer cells to chemotherapeutic drugs. Oncogene 2012, 31, 1024–1033. 10.1038/onc.2011.300. - DOI - PubMed
    14. Morse M. A.; Hobeika A.; Serra D.; Aird K.; McKinney M.; Aldrich A.; Clay T.; Mourich D.; Lyerly H. K.; Iversen P. L.; Devi G. R. Depleting regulatory T cells with arginine-rich, cell-penetrating, peptide-conjugated morpholino oligomer targeting FOXP3 inhibits regulatory T-cell function. Cancer Gene Ther. 2012, 19, 30–37. 10.1038/cgt.2011.63. - DOI - PubMed
    15. Moulton H. M.; Moulton J. D. Morpholinos and their peptide conjugates: Therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim. Biophys. Acta Biomembr. 2010, 1798, 2296–2303. 10.1016/j.bbamem.2010.02.012. - DOI - PubMed
    16. Passini M. A.; Gan L.; Wood J. A.; Yao M.; Estrella N. L.; Treleaven C. M.; Wentworth B. M.; Charleston J. S.; Rutkowski J. V.; Hanson G. J. Development of PPMO for the Treatment of Duchenne Muscular Dystrophy. Neurology 2018, 90.
    17. Wu B.; Moulton H. M.; Iversen P. L.; Jiang J.; Li J.; Li J.; Spurney C. F.; Sali A.; Guerron A. D.; Nagaraju K.; Doran T.; Lu P.; Xiao X.; Lu Q. L. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14814–14819. 10.1073/pnas.0805676105. - DOI - PMC - PubMed
    18. Yin H.; Moulton H. M.; Betts C.; Merritt T.; Seow Y.; Ashraf S.; Wang Q.; Boutilier J.; Wood M. J. Functional Rescue of Dystrophin-deficient mdx Mice by a Chimeric Peptide-PMO. Mol. Ther. 2010, 18, 1822–1829. 10.1038/mt.2010.151. - DOI - PMC - PubMed
    1. Egholm M.; Buchardt O.; Christensen L.; Behrens C.; Freier S. M.; Driver D. A.; Berg R. H.; Kim S. K.; Norden B.; Nielsen P. E. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993, 365, 566–568. 10.1038/365566a0. - DOI - PubMed
    2. Nielsen P.; Egholm M.; Berg R.; Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991, 254, 1497–1500. 10.1126/science.1962210. - DOI - PubMed
    1. Abes S.; Turner J. J.; Ivanova G. D.; Owen D.; Williams D.; Arzumanov A.; Clair P.; Gait M. J.; Lebleu B. Efficient splicing correction by PNA conjugation to an R-6-Penetratin delivery peptide. Nucleic Acids Res. 2007, 35, 4495–4502. 10.1093/nar/gkm418. - DOI - PMC - PubMed
    2. El-Andaloussi S.; Johansson H. J.; Lundberg P.; Langel Ü. Induction of splice correction by cell-penetrating peptide nucleic acids. J. Gene Med. 2006, 8, 1262–1273. 10.1002/jgm.950. - DOI - PubMed
    3. Hassane F. S.; Ivanova G. D.; Bolewska-Pedyczak E.; Abes R.; Arzumanov A. A.; Gait M. J.; Lebleu B.; Gariépy J. A Peptide-Based Dendrimer That Enhances the Splice-Redirecting Activity of PNA Conjugates in Cells. Bioconjugate Chem. 2009, 20, 1523–1530. 10.1021/bc900075p. - DOI - PubMed
    4. Ivanova G. D.; Arzumanov A.; Abes R.; Yin H.; Wood M. J. A.; Lebleu B.; Gait M. J. Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res. 2008, 36, 6418–6428. 10.1093/nar/gkn671. - DOI - PMC - PubMed
    5. Koppelhus U.; Shiraishi T.; Zachar V.; Pankratova S.; Nielsen P. E. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain. Bioconjugate Chem. 2008, 19, 1526–1534. 10.1021/bc800068h. - DOI - PubMed
    6. Turner J. J.; Ivanova G. D.; Verbeure B.; Williams D.; Arzumanov A. A.; Abes S.; Lebleu B.; Gait M. J. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res. 2005, 33, 6837–6849. 10.1093/nar/gki991. - DOI - PMC - PubMed
    1. Soudah T.; Mogilevsky M.; Karni R.; Yavin E. CLIP6-PNA-Peptide Conjugates: Non-Endosomal Delivery of Splice Switching Oligonucleotides. Bioconjugate Chem. 2017, 28, 3036–3042. 10.1021/acs.bioconjchem.7b00638. - DOI - PubMed

LinkOut - more resources