Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct:307:106582.
doi: 10.1016/j.jmr.2019.106582. Epub 2019 Aug 21.

Motion reduction for quantitative brain sodium MR imaging with a navigated flexible twisted projection imaging sequence at 9.4 T

Affiliations

Motion reduction for quantitative brain sodium MR imaging with a navigated flexible twisted projection imaging sequence at 9.4 T

Aiming Lu et al. J Magn Reson. 2019 Oct.

Abstract

Quantitative measurement of the tissue sodium concentration (TSC) provides a metric for tissue cell volume fraction for monitoring tumor responses to therapy and neurodegeneration in the brain as well as applications outside the central nervous system such as the fixed charge density in cartilage. Despite the low detection sensitivity of the sodium MR signal compared to the proton signal and the requirement for a long repetition time to minimize longitudinal magnetization saturation, acquisition time has been reduced to less than 10 min for a nominal isotropic voxel size of 3.3 mm with the improved acquisition efficiency of twisted projection imaging (TPI) at 9.4 T. However, patient motion can degrade the accuracy of the quantification even within these acquisition times. Our goal has been to improve the robustness of quantitative sodium MR imaging by minimizing the impact of motion that may occur even in cooperative patients. We present a method to spatially encode a lower resolution navigator echo after encoding the free induction decay signal for the quantitative image at no time penalty. Both the imaging and navigator data are sampled with flexTPI readout trajectories. Navigator images are generated at a higher temporal resolution (∼1 min) albeit at lower spatial resolution (8 mm) than the quantitative high-resolution images. The multiple volumes of navigator echo images are then aligned to extract the translational and rotational motion parameters assuming rigid-body motion. These parameters are used to align the k-space data during the acquisition of each volume of the quantitative images. Our results show significantly reduced image blurring with this method when the subject's head moved randomly by up to 7° between the navigator acquisitions.

Keywords: Eddy current correction; Motion correction; Navigator echo; Sodium imaging; Twisted projection imaging.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources