Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan 1:18:1533033819874128.
doi: 10.1177/1533033819874128.

Chemical Enhancement of Irreversible Electroporation: A Review and Future Suggestions

Affiliations
Review

Chemical Enhancement of Irreversible Electroporation: A Review and Future Suggestions

Ying Chen et al. Technol Cancer Res Treat. .

Abstract

Irreversible electroporation has raised great interest in the past decade as a means of destroying cancers in a way that does not involve heat. Irreversible electroporation is a novel ablation technology that uses short high-voltage electrical pulses to enhance the permeability of tumor cell membranes and generate irreversible nano-sized structural defects or pores, thus leading to cell death. Irreversible electroporation has many advantages over thermal therapies due to its nonthermal mechanism: (1) reduced risk of injury to surrounding organs and (2) no "heat-sink" effect due to nearby blood vessels. However, so far, it has been difficult for irreversible electroporation to completely ablate large tumors (eg, >3 cm in diameter). In order to overcome this problem, many preclinical and clinical studies have been performed to improve the efficacy of IRE in the treatment of large size of tumors through a chemical perspective. Due to the distribution of electric field, irreversible electroporation region, reversible electroporation region, and intact region can be found in the treatment of irreversible electroporation. Thus, 2 types of chemical enhancements of irreversible electroporation were discussed in the article, such as the reversible electroporation region enhanced and the irreversible electroporation region enhanced. Specifically, the state-of-the-art results regarding the following approaches that have the potential to be used in the enhancement of irreversible electroporation were systematically reviewed in the article, including (1) combination with cytotoxic drugs, (2) calcium electroporation, (3) modification of cell membrane, and (4) modification of the tumor cell microenvironment. In the end, we concluded with 4 issues that should be addressed in the future for improving irreversible electroporation further in a chemical way.

Keywords: calcium electroporation; cell microenvironment; chemical enhancement; cytotoxic drugs; irreversible electroporation; surfactants.

PubMed Disclaimer

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1.
Figure 1.
An ideal schematic of electric fields distribution around irreversible electroporation (IRE) electrodes.
Figure 2.
Figure 2.
The enhancing mechanism of calcium electroporation.
Figure 3.
Figure 3.
The ablation mechanism of IRE: (A) surface tension and edge line tension during pore formation, (B) nucleation based energy model and critical pore radius and energy.

Similar articles

Cited by

References

    1. Paiella S, Butturini G, Frigerio I, et al. Safety and feasibility of irreversible electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study. Dig Surg. 2015;32(2):90–97. - PubMed
    1. Lencioni R, Cioni D, Della Pina C, Crocetti L. Hepatocellular carcinoma: new options for image-guided ablation. J Hepatobiliary Pancreat Sci. 2010;17(4):399–403. - PubMed
    1. Wagstaff PG, Buijs M, van den Bos W, et al. Irreversible electroporation: state of the art. Onco Targets Ther. 2016;9:2437–2446. - PMC - PubMed
    1. Zhang B, Moser MA, Zhang EM, Luo Y, Liu C, Zhang W. A review of radiofrequency ablation: large target tissue necrosis and mathematical modelling. Phys Med. 2016;32:961–971. - PubMed
    1. Vroomen LGPH, Petre EN, Cornelis FH, Solomon SB, Srimathveeravalli G. Irreversible electroporation and thermal ablation of tumors in the liver, lung, kidney and bone: what are the differences? Diagn Interv Imaging. 2017;98(9):609–617. - PubMed

Publication types