Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep 9;10(9):650.
doi: 10.1038/s41419-019-1883-8.

The role of pyroptosis in cancer: pro-cancer or pro-"host"?

Affiliations
Review

The role of pyroptosis in cancer: pro-cancer or pro-"host"?

Xiaojing Xia et al. Cell Death Dis. .

Abstract

Programmed cell death (PCD) refers to the way in which cells die depending on specific genes encoding signals or activities. Apoptosis, autophagy, and pyroptosis are all mechanisms of PCD. Among these mechanisms, pyroptosis is mediated by the gasdermin family, accompanied by inflammatory and immune responses. The relationship between pyroptosis and cancer is complex, and the effects of pyroptosis on cancer vary in different tissues and genetic backgrounds. On one hand, pyroptosis can inhibit the occurrence and development of tumors; on the other hand, as a type of proinflammatory death, pyroptosis can form a suitable microenvironment for tumor cell growth and thus promote tumor growth. In addition, the induction of tumor pyroptosis is also considered a potential cancer treatment strategy. Studies have shown that DFNA5 (nonsyndromic hearing impairment protein 5)/GSDME (Gasdermin-E) mRNA methylation results in lower expression levels of DFNA5/GSDME in most tumor cells than in normal cells, making it difficult to activate the pyroptosis in most tumor cells. During the treatment of malignant tumors, appropriate chemotherapeutic drugs can be selected according to the expression levels of DFNA5/GSDME, which can be upregulated in tumor cells, thereby increasing the sensitivity to chemotherapeutic drugs and reducing drug resistance. Therefore, induced pyroptosis may play a predominant role in the treatment of cancer. Here, we review the latest research on the anti- and protumor effects of pyroptosis and its potential applications in cancer treatment.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Timeline summary of the history of pyroptosis
Fig. 2
Fig. 2. Schematic representation of pyroptosis pathways.
The canonical pathway upon sensing DAMPs, PAMPs or other cytosolic disturbances results in the recruitment and activation of caspase-1 either directly or through recruitment of the receptor protein ASC. Caspase-1 successively promotes maturation of the precursors of IL-1β and IL-18 into mature forms and cleaves GSDMD. The pore form domain (PFD) of GSDMD interacts with the plasma membrane to form GSDMD pores, resulting in the release of intracellular contents, including IL-1β and IL-18. The noncanonical pathway is initiated by the caspase-11 self-detection of cytosolic LPS in Gram-negative bacteria. Activated caspase-11 (caspase-4 or caspase-5 in humans) successively cleaves GSDMD and induces pyroptosis. The other pathway of pyroptosis can be engaged through mechanisms such as CASP8-GSDMD and CASP3-GSDME. In turn, activated caspase-3 cleaves GSDME to produce GSDMD-cNT, which forms pores in the plasma membrane and activates pyroptosis. The bacteria are recognized by TLR4, which signals via RIP1 to form a cell death complex consisting of RIP1, caspase-8, and FADD. Both this complex cleavage of GSDMD and activation through caspase 1/11 and GSDME cleavage via caspase-3 lead to cell membrane permeabilization and subsequent pyroptosis. In addition, neutrophil elastase (NE) is able to cleave GSDMD independently of caspase activity
Fig. 3
Fig. 3. Therapeutic targets of pyroptosis core proteins in cancer.
Drugs (chemotherapy drugs, new material, traditional Chinese medicines, etc.), miRNAs, receptor proteins, secreted factors of human umbilical cord mesenchymal stem cells, etc. can all modulate pyroptosis target core proteins in canonical, noncanonical, and other pathways for therapeutic benefit

Similar articles

Cited by

References

    1. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005;73:1907–1916. doi: 10.1128/IAI.73.4.1907-1916.2005. - DOI - PMC - PubMed
    1. Mariathasan S, Weiss DS, Dixit VM, Monack DM. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 2005;202:1043–1049. doi: 10.1084/jem.20050977. - DOI - PMC - PubMed
    1. Bergsbaken T, Cookson BT. Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 2007;3:e161. doi: 10.1371/journal.ppat.0030161. - DOI - PMC - PubMed
    1. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 2006;8:1812–1825. doi: 10.1111/j.1462-5822.2006.00751.x. - DOI - PubMed
    1. Chen X, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 2016;26:1007. doi: 10.1038/cr.2016.100. - DOI - PMC - PubMed

Publication types

Supplementary concepts