Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep;31(37):e1806411.
doi: 10.1002/adma.201806411. Epub 2019 Jul 10.

Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics

Affiliations
Review

Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics

Zheng Zhang et al. Adv Mater. 2019 Sep.

Abstract

Although the library of 2D atomic crystals has greatly expanded over the past years, research into graphene is still one of the focuses for both academia and business communities. Due to its unique electronic structure, graphene offers a powerful platform for exploration of novel 2D physics, and has significantly impacted a wide range of fields including energy, electronics, and photonics. Moreover, the versatility of combining graphene with other functional components provides a powerful strategy to design artificial van der Waals (vdWs) heterostructures. Aside from the stacked 2D-2D vdWs heterostructure, in a broad sense graphene can hybridize with other non-2D materials through vdWs interactions. Such mixed-dimensional vdWs (MDWs) structures allow considerable freedom in material selection and help to harness the synergistic advantage of different dimensionalities, which may compensate for graphene's intrinsic shortcomings. A succinct overview of representative advances in graphene-based MDWs heterostructures is presented, ranging from assembly strategies to applications in optoelectronics. The scientific merit and application advantages of these hybrid structures are particularly emphasized. Moreover, considering possible breakthroughs in new physics and application potential on an industrial scale, the challenges and future prospects in this active research field are highlighted.

Keywords: graphene; mixed-dimensional vdWs heterostructures; optoelectronics; strain modulation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
    1. a) S. Das, J. A. Robinson, M. Dubey, H. Terrones, M. Terrones, Annu. Rev. Mater. Res. 2015, 45, 1;
    1. b) G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, J. A. Robinson, ACS Nano 2015, 9, 11509;
    1. c) J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu, Nature 2018, 556, 355;
    1. d) X. Zhang, Z. Lai, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 3301;

LinkOut - more resources