Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics
- PMID: 31503377
- DOI: 10.1002/adma.201806411
Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics
Abstract
Although the library of 2D atomic crystals has greatly expanded over the past years, research into graphene is still one of the focuses for both academia and business communities. Due to its unique electronic structure, graphene offers a powerful platform for exploration of novel 2D physics, and has significantly impacted a wide range of fields including energy, electronics, and photonics. Moreover, the versatility of combining graphene with other functional components provides a powerful strategy to design artificial van der Waals (vdWs) heterostructures. Aside from the stacked 2D-2D vdWs heterostructure, in a broad sense graphene can hybridize with other non-2D materials through vdWs interactions. Such mixed-dimensional vdWs (MDWs) structures allow considerable freedom in material selection and help to harness the synergistic advantage of different dimensionalities, which may compensate for graphene's intrinsic shortcomings. A succinct overview of representative advances in graphene-based MDWs heterostructures is presented, ranging from assembly strategies to applications in optoelectronics. The scientific merit and application advantages of these hybrid structures are particularly emphasized. Moreover, considering possible breakthroughs in new physics and application potential on an industrial scale, the challenges and future prospects in this active research field are highlighted.
Keywords: graphene; mixed-dimensional vdWs heterostructures; optoelectronics; strain modulation.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Tunable WSe2-CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector.Nanoscale. 2018 Aug 2;10(30):14472-14479. doi: 10.1039/c8nr04376k. Nanoscale. 2018. PMID: 30022213
-
Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.Chem Soc Rev. 2018 Jul 2;47(13):4981-5037. doi: 10.1039/c8cs00067k. Chem Soc Rev. 2018. PMID: 29736528 Review.
-
Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays.ACS Nano. 2019 Aug 27;13(8):9057-9066. doi: 10.1021/acsnano.9b03239. Epub 2019 Jul 23. ACS Nano. 2019. PMID: 31322333
-
Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide.Phys Chem Chem Phys. 2021 Mar 11;23(9):5244-5253. doi: 10.1039/d0cp06426b. Phys Chem Chem Phys. 2021. PMID: 33629670
-
Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures.Small. 2024 Nov;20(48):e2403129. doi: 10.1002/smll.202403129. Epub 2024 Jul 19. Small. 2024. PMID: 39030967 Free PMC article. Review.
Cited by
-
Tunable Quantum Tunneling through a Graphene/Bi2Se3 Heterointerface for the Hybrid Photodetection Mechanism.ACS Appl Mater Interfaces. 2021 Dec 15;13(49):58927-58935. doi: 10.1021/acsami.1c18606. Epub 2021 Dec 2. ACS Appl Mater Interfaces. 2021. PMID: 34855351 Free PMC article.
-
Bandgap Engineering of 2D Materials toward High-Performing Straintronics.Nano Lett. 2024 Oct 2;24(41):12722-32. doi: 10.1021/acs.nanolett.4c03321. Online ahead of print. Nano Lett. 2024. PMID: 39356251 Free PMC article. Review.
-
In Situ Reduced Graphene Oxide and Polyvinyl Alcohol Nanocomposites With Enhanced Multiple Properties.Front Chem. 2022 Mar 22;10:856556. doi: 10.3389/fchem.2022.856556. eCollection 2022. Front Chem. 2022. PMID: 35392418 Free PMC article.
-
Low-Temperature Direct Growth of Amorphous Boron Nitride Films for High-Performance Nanoelectronic Device Applications.ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7274-7281. doi: 10.1021/acsami.2c18706. Epub 2023 Jan 31. ACS Appl Mater Interfaces. 2023. PMID: 36719071 Free PMC article.
-
Tracking and controlling ultrafast charge and energy flow in graphene-semiconductor heterostructures.Innovation (Camb). 2025 Jan 4;6(3):100764. doi: 10.1016/j.xinn.2024.100764. eCollection 2025 Mar 3. Innovation (Camb). 2025. PMID: 40098674 Free PMC article. Review.
References
-
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
-
- a) S. Das, J. A. Robinson, M. Dubey, H. Terrones, M. Terrones, Annu. Rev. Mater. Res. 2015, 45, 1;
-
- b) G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, J. A. Robinson, ACS Nano 2015, 9, 11509;
-
- c) J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu, Nature 2018, 556, 355;
-
- d) X. Zhang, Z. Lai, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 3301;
Publication types
Grants and funding
- 51527802/National Natural Science Foundation of China
- 51602020/National Natural Science Foundation of China
- 51702017/National Natural Science Foundation of China
- 51722203/National Natural Science Foundation of China
- 51672026/National Natural Science Foundation of China
- B14003/Overseas Expertise Introduction Project for Discipline Innovation
- Z180011/Natural Science Foundation of Beijing Municipality
- 2016YFA0202701/National Basic Research Program of China (973 Program)
- FRF-TP-18-004A2/Fundamental Research Funds for the Central Universities
- BD-18-012A/Fundamental Research Funds for the Central Universities
LinkOut - more resources
Full Text Sources
Miscellaneous