Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 15;91(20):12935-12941.
doi: 10.1021/acs.analchem.9b02994. Epub 2019 Sep 24.

Ultrasensitive Detection of Dopamine with Carbon Nanopipets

Affiliations

Ultrasensitive Detection of Dopamine with Carbon Nanopipets

Keke Hu et al. Anal Chem. .

Abstract

Carbon fiber micro- and nanoelectrodes have been extensively used to measure dopamine and other neurotransmitters in biological systems. Although the radii of some reported probes were ≪1 μm, the lengths of the exposed carbon were typically on the micrometer scale, thus limiting the spatial resolution of electroanalytical measurements. Recent attempts to determine neurotransmitters in single cells and vesicles have provided additional impetus for decreasing the probe dimensions. Here, we report two types of dopamine sensors based on carbon nanopipets (CNP) prepared by chemical vapor deposition of carbon into prepulled quartz capillaries. These include 10-200 nm radius CNPs with a cavity near the orifice and CNPs with an open path in the middle, in which the volume of sampled solution can be controlled by the applied pressure. Because of the relatively large surface area of carbon exposed to solution inside the pipet, both types of sensors yielded well-shaped voltammograms of dopamine down to ca. 1 nM concentrations, and the unprecedented voltammetric response to 100 pM dopamine was obtained with open CNPs. TEM tomography and numerical simulations were used to model CNP responses. The effect of dopamine adsorption on the CNP detection limit is discussed along with the possibilities of measuring other physiologically important analytes (e.g., serotonin) and eliminating anionic and electrochemically irreversible interferences (e.g., ascorbic acid).

PubMed Disclaimer

Publication types

LinkOut - more resources