Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 14;30(3):1436-1446.
doi: 10.1093/cercor/bhz177.

Long-Lasting Somatic Modifications of Convergent Dendritic Inputs in Hippocampal Neurons

Affiliations

Long-Lasting Somatic Modifications of Convergent Dendritic Inputs in Hippocampal Neurons

Xin Yang et al. Cereb Cortex. .

Abstract

Integrated neural inputs from different dendrites converge at the soma for action potential generation. However, it is unclear how the convergent dendritic inputs interact at the soma and whether they can be further modified there. We report here an entirely new plasticity rule in hippocampal neurons in which repetitive pairing of subthreshold excitatory inputs from proximal apical and basal dendrites at a precise interval induces persistent bidirectional modifications of the two dendritic inputs. Strikingly, the modification of the dendritic inputs specially occurs at soma in the absence of somatic action potential and requires activation of somatic N-methyl-D-aspartate receptors (NMDARs). Once induced, the somatic modification can also be observed in other unpaired dendritic inputs upon their arrival at the soma. We further reveal that the soma can employ an active mechanism to potentiate the dendritic inputs by promoting sustained activation of somatic NMDARs and subsequent down-regulating of the fast inactivating A-type potassium current (IA) at the soma. Thus, the input-timing-dependent somatic plasticity we uncovered here is in sharp contrast to conventional forms of synaptic plasticity that occur at the dendrites and is important to somatic action potential generation.

Keywords: NMDA receptor; dendritic inputs; hippocampal neurons; somatic modifications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources