On the promise of artificial intelligence for standardizing radiographic response assessment in gliomas
- PMID: 31504809
- PMCID: PMC6827830
- DOI: 10.1093/neuonc/noz162
On the promise of artificial intelligence for standardizing radiographic response assessment in gliomas
Comment on
-
Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement.Neuro Oncol. 2019 Nov 4;21(11):1412-1422. doi: 10.1093/neuonc/noz106. Neuro Oncol. 2019. PMID: 31190077 Free PMC article.
References
-
- Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013;31(8):1426–1438. - PubMed
-
- Işın A, Direkoğlu C, Şah M. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci. 2016;102:317–324.
-
- Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97–R129. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources