Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 10;9(1):13031.
doi: 10.1038/s41598-019-49650-8.

Animal residues found on tiny Lower Paleolithic tools reveal their use in butchery

Affiliations

Animal residues found on tiny Lower Paleolithic tools reveal their use in butchery

Flavia Venditti et al. Sci Rep. .

Abstract

Stone tools provide a unique window into the mode of adaptation and cognitive abilities of Lower Paleolithic early humans. The persistently produced large cutting tools (bifaces/handaxes) have long been an appealing focus of research in the reconstruction of Lower Paleolithic survival strategies, at the expenses of the small flake tools considered by-products of the stone production process rather than desired end products. Here, we use use-wear, residues and technological analyses to show direct and very early evidence of the deliberate production and use of small flakes for targeted stages of the prey butchery process at the late Lower Paleolithic Acheulian site of Revadim, Israel. We highlight the significant role of small flakes in Lower Paleolithic adaptation alongside the canonical large handaxes. Our results demonstrate the technological and cognitive flexibility of early human groups in the Levant and beyond at the threshold of the departure from Lower Paleolithic lifeways.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Geographical and archaeological settings of the Revadim site. (a) The location and excavation areas of the late Acheulian site of Revadim. (b) Handaxe from the layer C3 assemblage. (c) A group of small flakes produced by lithic recycling. (d) Close-up of layer C3. (e) Area C, view to the north east.
Figure 2
Figure 2
Different types of alterations observed on the products of recycling. (a) Post-depositional and (b,c) post-excavation edge scarring. (d) Four small flakes from Revadim exhibiting evidence of color change due to patination. (eg) OLM graphs showing different degrees of patination observed on the archaeological specimens (magnification: 100X).
Figure 3
Figure 3
Edge-damage observed on small flakes from Revadim. (a) Scarring related to cutting soft to medium material. (b) Scarring related to cutting medium material. (c) Scarring related to cutting soft to medium material. (d) Scarring related to cutting soft to medium material. (e) Scarring related to scraping medium to hard material. (f) Scarring related to scraping soft to medium material.
Figure 4
Figure 4
Double ventral lateral item with related use-wear and residue results. (a) Double ventral lateral item Av14b 71.12-10 #81. (b) Feather/step and hinge scars running along the outer edge with a transversal orientation and a close-irregular distribution associated with a transversal motion on hard material. (c) Bone-like polish located along the ventral edge and associated with prolonged contact with bone (magnification: 500X). (d,e) Close-up of the bony tissues entrapped on the damaged edge of the dorsal surface (OLM and BSE-SEM image). (f) EDX spectrum of residues on the active dorsal edge. (g) micro-FTIR spectrum of bone and adipocere micro-residues (green) over the dorsal surface. Black spectrum shows the fundamental mode of pure silica. Red and blue dots show respectively the EDX and FTIR sampling points.
Figure 5
Figure 5
Example of animal residues found on small recycled flakes. (a) Double ventral lateral item AQ15a 71-12-08 #79. (b) Hinge and snap scars running along the outer edge with a close regular distribution and associated to a mixed motion on soft to medium material. (c) SEM image of collagen fibers smeared and entrapped in a wide scar along the used edge (BSE-SEM image). (d) SEM-EDX spectrum of the collagen fibers showing the characteristic peak of sulphur. (e) Double ventral regular item AS14d 71.14-13 #8. (f,h) SEM image of amorphous patches of white bone residues along the used edge (BSE-SEM image). (g) OLM image of white-yellow greasy amorphous structures compressed across a zone of prehension. In the close-up, note birefringent yellow collagen fibers entrapped inside the smeared residue.
Figure 6
Figure 6
Example of animal residues found on small recycled flakes. (a) Double bulb Kombewa item AU16c 71.10-05 #62. (b) Feather and hinge scars running along the outer edge and interpreted as cutting medium-hard material. (c,d) Patch of compressed powder-like residue consistent with bony tissue and related SEM-EDX spectrum showing the diagnostic peak of calcium and phosphorous. (e) Double ventral lateral item AW16d 71.15-12 #88. (f) Greasy yellow-white amorphous animal residues compressed in a flint scar along the edge on the prehensile area and consistent with animal grease and fat. (g) Close-up of the same residual material showing fragments of birefringent collagen fibers entrapped inside. (h) SEM image showing hinge close-regular edge damage interpreted as cutting soft to medium material (BSE-SEM image).
Figure 7
Figure 7
Experimental residues after processing animal materials. (a) Patch of bone powder and collagen fibers from experimental periosteum removal. (b) Experimental yellow-reddish animal residue of fat, blood, and collagen fibers localized away from the edge of a tiny tool used in butchery. Notice the greasy, “mud-cracked” and desiccated appearance of the residue. (c) Elongated fibers left after butchery activity along the edge (d) Compressed animal residual matter on the cortical prehensile area after filleting meat. (e) Close-up on fat residual matter smeared far away from the edge of a small tool used for skinning hide.

Similar articles

Cited by

References

    1. Bar-Yosef O, Belmaker M. Early and Middle Pleistocene faunal and hominins dispersals through southwestern Asia. Quat. Sci. Rev. 2011;30:1318–1337. doi: 10.1016/j.quascirev.2010.02.016. - DOI
    1. Shipton C, Nielsen M. Before cumulative culture. Human Nature. 2015;26(3):331–345. doi: 10.1007/s12110-015-9233-8. - DOI - PubMed
    1. de la Torre I. The origins of the Acheulean: past and present perspectives on a major transition in human evolution. Phil. Trans. R. Soc. B. 2016;371:20150245. doi: 10.1098/rstb.2015.0245. - DOI - PMC - PubMed
    1. Finkel, M. & Barkai, R. The Acheulean handaxe technological persistence: A case of preferred cultural conservatism? Proceedings of the Prehistoric Society, 1–19 (2018).
    1. Elias, S. Origins of Human Innovation and Creativity. (Developments in Quaternary Sciences 16, Amsterdam, 2012).

Publication types