Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar;100(3):503-511.
doi: 10.1038/s41374-019-0319-5. Epub 2019 Sep 10.

RIP1/RIP3/MLKL mediates dopaminergic neuron necroptosis in a mouse model of Parkinson disease

Affiliations
Free article

RIP1/RIP3/MLKL mediates dopaminergic neuron necroptosis in a mouse model of Parkinson disease

Qing-Song Lin et al. Lab Invest. 2020 Mar.
Free article

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by severe neuronal loss. Necroptosis, or programmed cell necrosis, is mediated by the receptor interacting protein kinase-1 and -3/mixed lineage kinase domain-like protein (RIP1/RIP3/MLKL) pathway, and is involved in several neurodegenerative diseases. Here we aimed to explore the involvement of necroptosis in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced PD and determine the potential mechanisms. We found that the protein levels of RIP1, RIP3, and MLKL increased significantly in a MPTP-induced mouse PD model. High expression of RIP1/RIP3/MLKL was associated with severe loss of dopaminergic neurons. Pretreatment with necrostatin-1 or the knockout of the RIP3/MLKL gene to block necroptosis pathway dramatically ameliorated PD by increasing dopamine levels and rescuing the loss of dopaminergic neurons, independent of the apoptotic pathway. Moreover, upregulation of inflammatory cytokines in MPTP-treated mice was partially inhibited by deletion of RIP3 or MLKL gene, indicating that a positive feedback loop exists between these genes and inflammatory cytokines. Our data indicate that RIP1/RIP3/MLKL-mediated necroptosis is involved in the pathogenesis of MPTP-induced PD. Downregulating the expression of RIP1, RIP3, or MLKL can significantly attenuate MPTP-induced PD. Future therapy targeting necroptosis may be a promising new option.

PubMed Disclaimer

Similar articles

Cited by

References

    1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. The Lancet Neurology. 2006;5:525–35. - DOI
    1. Latourelle JC, Beste MT, Hadzi TC, Miller RE, Oppenheim JN, Valko MP, et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation. Lancet Neurol. 2017;16:908–16. - DOI
    1. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, et al. Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature. 2016;533:95–9. - DOI
    1. Zhao WZ, Wang HT, Huang HJ, Lo YL, Lin AM. Neuroprotective effects of baicalein on acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system of rat brain. Mol Neurobiol. 2017;55:130–7. - DOI
    1. Zhou Y, Lu M, Du R-H, Qiao C, Jiang C-Y, Zhang K-Z, et al. MicroRNA-7 targets nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener. 2016;11. https://doi.org/10.1186/s13024-016-0094-3 .

Publication types

Substances

LinkOut - more resources