Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep;5(9):924-932.
doi: 10.1038/s41477-019-0502-0. Epub 2019 Sep 9.

Cell wall integrity maintenance during plant development and interaction with the environment

Affiliations
Review

Cell wall integrity maintenance during plant development and interaction with the environment

Lauri Vaahtera et al. Nat Plants. 2019 Sep.

Abstract

Cell walls are highly dynamic structures that provide mechanical support for plant cells during growth, development and adaptation to a changing environment. Thus, it is important for plants to monitor the state of their cell walls and ensure their functional integrity at all times. This monitoring involves perception of physical forces at the cell wall-plasma membrane interphase. These forces are altered during cell division and morphogenesis, as well as in response to various abiotic and biotic stresses. Mechanisms responsible for the perception of physical stimuli involved in these processes have been difficult to separate from other regulatory mechanisms perceiving chemical signals such as hormones, peptides or cell wall fragments. However, recently developed technologies in combination with more established genetic and biochemical approaches are beginning to open up this exciting field of study. Here, we will review our current knowledge of plant cell wall integrity signalling using selected recent findings and highlight how the cell wall-plasma membrane interphase can act as a venue for sensing changes in the physical forces affecting plant development and stress responses. More importantly, we discuss how these signals may be integrated with chemical signals derived from established signalling cascades to control specific adaptive responses during exposure to biotic and abiotic stresses.

PubMed Disclaimer

References

    1. Doblin, M. S., Johnson, K. L., Humphries, J., Newbigin, E. J. & Bacic, A. T. Are designer plant cell walls a realistic aspiration or will the plasticity of the plant’s metabolism win out? Curr. Opin. Biotechnol. 26, 108–114 (2014). - PubMed
    1. Mahon, E. L. & Mansfield, S. D. Tailor-made trees: engineering lignin for ease of processing and tomorrow’s bioeconomy. Curr. Opin. Biotechnol. 56, 147–155 (2019). - PubMed
    1. Wolf, S. Plant cell wall signaling and receptor-like kinases. Biochem. J. 474, 471–492 (2017). - PubMed
    1. Bacete, L., Mélida, H., Miedes, E. & Molina, A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93, 614–636 (2018). - PubMed
    1. Novaković, L., Guo, T., Bacic, A., Sampathkumar, A. & Johnson, K. Hitting the wall—sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants 7, 89 (2018). - PMC

Publication types

LinkOut - more resources