Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;38(6):1481-1491.
doi: 10.1007/s00345-019-02946-w. Epub 2019 Sep 10.

How to implement magnetic resonance imaging before prostate biopsy in clinical practice: nomograms for saving biopsies

Affiliations

How to implement magnetic resonance imaging before prostate biopsy in clinical practice: nomograms for saving biopsies

Ángel Borque-Fernando et al. World J Urol. 2020 Jun.

Abstract

Purpose: To combine multiparametric MRI (mpMRI) findings and clinical parameters to provide nomograms for diagnosing different scenarios of aggressiveness of prostate cancer (PCa).

Methods: A cohort of 346 patients with suspicion of PCa because of abnormal finding in digital rectal examination (DRE) and/or high prostate specific antigen (PSA) level received mpMRI prior to prostate biopsy (PBx). A conventional 12-core transrectal PBx with two extra cores from suspicious areas in mpMRI was performed by cognitive fusion. Multivariate logistic regression analysis was performed combining age, PSA density (PSAD), DRE, number of previous PBx, and mpMRI findings to predict three different scenarios: PCa, significant PCa (ISUP-group ≥ 2), or aggressive PCa (ISUP-group ≥ 3). We validate models by ROC curves, calibration plots, probability density functions (PDF), and clinical utility curves (CUC). Cut-off probabilities were estimated for helping decision-making in clinical practice.

Results: Our cohort showed 39.6% incidence of PCa, 32.6% of significant PCa, and 23.4% of aggressive PCa. The AUC of predictive models were 0.856, 0.883, and 0.911, respectively. The PDF and CUC showed 11% missed diagnoses of significant PCa (35 cases of 326 significant PCa expected in 1000 proposed Bx) when choosing < 18% as the cutoff of probability for not performing PBx; the percentage of saved PBx was 47% (474 avoided PBx in 1000 proposed).

Conclusion: We developed clinical and mpMRI-based nomograms with a high discrimination ability for three different scenarios of PCa aggressiveness (https://urostatisticalsolutions.shinyapps.io/MRIfusionPCPrediction/). Specific clinical cutoff points allow us to save a high number of PBx with a minimum of missed diagnoses.

Keywords: Multiparemetric resonance imaging; Nomograms; PI-RADS; Prostate cancer.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Siegel R, Miller KD, Ahmedin J (2017) Cáncer statistics. Ca Cáncer J 67:7–30. https://doi.org/10.3322/caac.21387 - DOI
    1. Galceran J, Ameijide A, Carulla M, Mateos A, Quirós JR et al (2017) Cancer incidence in Spain, 2015. Clin Transl Oncol 19:799–825. https://doi.org/10.1007/s12094-016-1607-9 - DOI - PubMed
    1. Li M, Huang Z, Yu H, Wang Y, Zhang Y, Song B (2019) Comparison of PET/MRI with multiparametric MRI in diagnosis of primary prostate cancer: a meta-analysis. Eur J Radiol 113:225–231. https://doi.org/10.1016/j.ejrad.2019.02.028 - DOI - PubMed
    1. Cuocolo R, Stanzione A, Rusconi G, Petretta M, Ponsiglione A, Fusco F, Longo N, Persico F, Cocozza S, Brunetti A, Imbriaco M (2018) PSA-density does not improve bi-parametric prostate MR detection of prostate cancer in a biopsy naïve patient population. Eur J Radiol 104:64–70. https://doi.org/10.1016/j.ejrad.2018.05.004 - DOI - PubMed
    1. Sanda MG, Cadeddu J, Kirkby E, Chen RC, Crispino T, Fontanarosa J, Freedland SJ, Greene K, Klotz LH, Makarov DV, Nelson JB, Rodrigues G, Sandler HM, Taplin ME, Treadwell JR (2018) Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part II: recommended approaches and details of specific care options. J Urol 199:990–997. https://doi.org/10.1016/j.juro.2018.01.002 - DOI - PubMed

LinkOut - more resources