Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 4:10:68.
doi: 10.1186/s40104-019-0378-x. eCollection 2019.

Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle

Affiliations

Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle

Ibukun M Ogunade et al. J Anim Sci Biotechnol. .

Abstract

Several studies have evaluated the effects of live yeast supplementation on rumen microbial population; however, its effect on differential microbial genes and their functional potential has not been described. Thus, this study applied shotgun metagenomic sequencing to evaluate the effects of live yeast supplementation on genetic and functional potential of the rumen microbiota in beef cattle. Eight rumen-cannulated Holstein steers were randomly assigned to two treatments in a cross-over design with two 25-day experimental periods and a 10-day wash-out between the two periods. The steers were housed in individual pens and fed 50% concentrate-mix and 50% red clover/orchard hay ad libitum. Treatments were (1) control (CON; basal diet without additive) and (2) yeast (YEA; basal diet plus 15 g/d of live yeast product). Rumen fluid samples were collected at 3, 6, and 9 h after feeding on the last d of each period. Sequencing was done on an Illumina HiSeq 2500 platform. Dietary yeast supplementation increased the relative abundance of carbohydrate-fermenting bacteria (such as Ruminococcus albus, R. champanellensis, R. bromii, and R. obeum) and lactate-utilizing bacteria (such as Megasphaera elsdenii, Desulfovibrio desulfuricans, and D. vulgaris). A total of 154 differentially abundant genes (DEGs) were obtained (false discovery rate < 0.01). Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis of the DEGs revealed that 10 pathways, including amino sugar and nucleotide sugar metabolism, oxidative phosphorylation, lipopolysaccharide biosynthesis, pantothenate and coenzyme A biosynthesis, glutathione metabolism, beta-alanine metabolism, polyketide sugar unit biosynthesis, protein export, ribosome, and bacterial secretory system, were enriched in steers fed YEA. Annotation analysis of the DEGs in the carbohydrate-active enzymes (CAZy) database revealed that the abundance of genes coding for enzymes belonging to glycoside hydrolases, glycosyltransferases, and carbohydrate binding modules were enriched in steers fed YEA. These results confirm the effectiveness of a live S. cerevisiae product for improving rumen function in beef steers by increasing the abundance of cellulolytic bacteria, lactic acid-utilizing bacteria, and carbohydrate-active enzymes in the rumen.

Keywords: Functional potential; Live yeast; Rumen.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Distribution of the carbohydrate-active enzymes

Similar articles

Cited by

References

    1. Chaucheyras-Durand Frederique, Chevaux Eric, Martin Cecile, Forano Evelyne. Probiotic in Animals. 2012. Use of Yeast Probiotics in Ruminants: Effects and Mechanisms of Action on Rumen pH, Fibre Degradation, and Microbiota According to the Diet.
    1. Nisbet DJ, Martin SA. The effect of Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. J Anim Sci. 1991;69:4628–4633. doi: 10.2527/1991.69114628x. - DOI - PubMed
    1. Ercolini D. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol. 2013;79:3148–3155. doi: 10.1128/AEM.00256-13. - DOI - PMC - PubMed
    1. Jiang Y, Ogunade IM, Qi S, Hackmann TJ, Staples CR, Adesogan AT. Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. J Dairy Sci. 2017;100:325–342. doi: 10.3168/jds.2016-11263. - DOI - PubMed
    1. Mann E, Wetzels SU, Wagner M, Zebeli Q, Schmitz-Esser S. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front Microbiol. 2018;9:43. doi: 10.3389/fmicb.2018.00043. - DOI - PMC - PubMed

LinkOut - more resources