Media Characterization under Scattering Conditions by Nanophotonics Iterative Multiplane Spectroscopy Measurements
- PMID: 31508554
- PMCID: PMC6733169
- DOI: 10.1021/acsomega.9b01976
Media Characterization under Scattering Conditions by Nanophotonics Iterative Multiplane Spectroscopy Measurements
Abstract
Characterizing materials is preferably done by multiple wavelengths. In opaque materials, the scattering poses a challenge due to the additional complexity to the spectroscopic measurements. We have previously demonstrated an iterative multiplane method for characterizing materials using the reflection from turbid media. Initial studies were performed in the red wavelength regime (632.8 nm) which is optimal for biomedical applications. However, in order to differentiate between materials, it is better to use multiple wavelengths, as spectroscopy may detect the material fingerprint. In this paper, our iterative multiplane optical property extraction (IMOPE) technique is presented in the blue regime (473 nm). Agar-based solid phantom measurements were conducted and compared to our theoretical model. Compatibility between experiments in the red and blue wavelengths shows the robustness of our technique.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Noninvasive Nanodiamond Skin Permeation Profiling Using a Phase Analysis Method: Ex Vivo Experiments.ACS Nano. 2022 Oct 25;16(10):15760-15769. doi: 10.1021/acsnano.2c03613. Epub 2022 Aug 29. ACS Nano. 2022. PMID: 36037067
-
New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements.Int J Nanomedicine. 2016 Oct 11;11:5237-5244. doi: 10.2147/IJN.S119130. eCollection 2016. Int J Nanomedicine. 2016. PMID: 27785024 Free PMC article.
-
Algorithm for in vivo detection of tissue type from multiple scattering light phase images.Biomed Opt Express. 2019 May 21;10(6):2909-2917. doi: 10.1364/BOE.10.002909. eCollection 2019 Jun 1. Biomed Opt Express. 2019. PMID: 31259061 Free PMC article.
-
Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering.Biomed Opt Express. 2016 May 4;7(6):2088-94. doi: 10.1364/BOE.7.002088. eCollection 2016 Jun 1. Biomed Opt Express. 2016. PMID: 27375928 Free PMC article.
-
Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths.Appl Opt. 1999 Apr 1;38(10):2097-104. doi: 10.1364/ao.38.002097. Appl Opt. 1999. PMID: 18319770
Cited by
-
Iterative optical technique for detecting anti-leishmania nanoparticles in mouse lesions.Biomed Opt Express. 2021 Jun 28;12(7):4496-4509. doi: 10.1364/BOE.425798. eCollection 2021 Jul 1. Biomed Opt Express. 2021. PMID: 34457428 Free PMC article.
-
A Novel Facial Cream Based on Skin-penetrable Fibrillar Collagen Microparticles.J Clin Aesthet Dermatol. 2022 May;15(5):59-64. J Clin Aesthet Dermatol. 2022. PMID: 35642230 Free PMC article.
-
Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets.Ultrason Sonochem. 2022 May;86:106041. doi: 10.1016/j.ultsonch.2022.106041. Epub 2022 May 18. Ultrason Sonochem. 2022. PMID: 35617883 Free PMC article.
References
-
- Pelletier M. J.Analytical Applications of Raman Spectroscopy; Blackwell Science Oxford: 1999; Vol. 427.
-
- McCreery R. L.Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: 2005; Vol. 225.
-
- Ferreira Lima A. M.; Daniel C. R.; Navarro R. S.; Bodanese B.; Pasqualucci C. A.; Tavares Pacheco M. T.; Zângaro R. A.; Silveira L. Jr. Discrimination of non-melanoma skin cancer and keratosis from normal skin tissue in vivo and ex vivo by Raman spectroscopy. Vib. Spectrosc. 2019, 100, 131–141. 10.1016/j.vibspec.2018.11.009. - DOI
LinkOut - more resources
Full Text Sources