Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan 8;120(1):288-309.
doi: 10.1021/acs.chemrev.9b00249. Epub 2019 Sep 11.

Synthetic Systems Powered by Biological Molecular Motors

Affiliations
Review

Synthetic Systems Powered by Biological Molecular Motors

Gadiel Saper et al. Chem Rev. .

Abstract

Biological molecular motors (or biomolecular motors for short) are nature's solution to the efficient conversion of chemical energy to mechanical movement. In biological systems, these fascinating molecules are responsible for movement of molecules, organelles, cells, and whole animals. In engineered systems, these motors can potentially be used to power actuators and engines, shuttle cargo to sensors, and enable new computing paradigms. Here, we review the progress in the past decade in the integration of biomolecular motors into hybrid nanosystems. After briefly introducing the motor proteins kinesin and myosin and their associated cytoskeletal filaments, we review recent work aiming for the integration of these biomolecular motors into actuators, sensors, and computing devices. In some systems, the creation of mechanical work and the processing of information become intertwined at the molecular scale, creating a fascinating type of "active matter". We discuss efforts to optimize biomolecular motor performance, construct new motors combining artificial and biological components, and contrast biomolecular motors with current artificial molecular motors. A recurrent theme in the work of the past decade was the induction and utilization of collective behavior between motile systems powered by biomolecular motors, and we discuss these advances. The exertion of external control over the motile structures powered by biomolecular motors has remained a topic of many studies describing exciting progress. Finally, we review the current limitations and challenges for the construction of hybrid systems powered by biomolecular motors and try to ascertain if there are theoretical performance limits. Engineering with biomolecular motors has the potential to yield commercially viable devices, but it also sharpens our understanding of the design problems solved by evolution in nature. This increased understanding is valuable for synthetic biology and potentially also for medicine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources