Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul;84(7):762-772.
doi: 10.1134/S0006297919070071.

Intravasation as a Key Step in Cancer Metastasis

Affiliations
Review

Intravasation as a Key Step in Cancer Metastasis

M V Zavyalova et al. Biochemistry (Mosc). 2019 Jul.

Abstract

Intravasation is a key step in cancer metastasis during which tumor cells penetrate the vessel wall and enter circulation, thereby becoming circulating tumor cells and potential metastatic seeds. Understanding the molecular mechanisms of intravasation is critically important for the development of therapeutic strategies to prevent metastasis. In this article, we review current data on the mechanisms of cancer cell intravasation into the blood and lymphatic vessels. The entry of mature thymocytes into the circulation and of dendritic cells into the regional lymph nodes is considered as example of intravasation under physiologically normal conditions. Intravasation in a pathophysiological state is illustrated by the reverse transendothelial migration of leukocytes into the bloodstream from the sites of inflammation mediated by the sphingosine 1-phosphate interaction with its receptors. Intravasation involves both invasion-dependent and independent mechanisms. In particular, mesenchymal and amoeboid cell invasion, as well as neoangiogenesis and vascular remodeling, are discussed to play a significant role in the entry of tumor cells to the circulation. Special attention is given to the contribution of macrophages to the intravasation via the CSF1/EGF (colony stimulating factor 1/epidermal growth factor) paracrine signaling pathway and the TMEM (tumor microenvironment of metastasis)-mediated mechanisms. Other mechanisms including intravasation of tumor cell clusters surrounded by the vessel wall elements, cooperative intravasation (entry of non-invasive tumor cells to the circulation following invasive tumor cells), and intravasation associated with the vasculogenic mimicry (formation of vascular channels by tumor cells) are also discussed. Novel intravasation-specific mechanisms that have not yet been described in the literature are suggested. The importance of targeted therapeutic strategies to prevent cancer intravasation is emphasized.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources