Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 12;12(1):450.
doi: 10.1186/s13071-019-3707-1.

Prevalence of the emerging novel Alongshan virus infection in sheep and cattle in Inner Mongolia, northeastern China

Affiliations

Prevalence of the emerging novel Alongshan virus infection in sheep and cattle in Inner Mongolia, northeastern China

Ze-Dong Wang et al. Parasit Vectors. .

Abstract

Background: Alongshan virus (ALSV) is a novel discovered segmented flavivirus associated with human febrile illness in northeastern China. Ixodes persulcatus is considered as a candidate vector of ALSV in the endemic regions. However, the role of domesticated animals in the circulation and transmission of ALSV have not been investigated. To evaluate the prevalence of ALSV infections in domesticated animals, viral RNA and viral specific antibodies were detected in sheep and cattle in Hulunbuir of northeastern Inner Mongolia. The findings contribute to the understanding of the ecology and transmission of ALSV among different natural hosts.

Methods: A total of 480 animal serum samples were collected in Hulunbuir of northeastern China in May, 2017. Viral specific antibodies were tested by indirect enzyme-linked immunosorbent assay (ELISA) with a purified E. coli recombinant capsid protein (VP2) of ALSV (strain H3) and further detected by viral neutralization test (VNT). RNA in serum samples were extracted and detected for ALSV sequence by quantitative real-time RT-PCR. ALSV RNA positive samples were used for virus isolation.

Results: ALSV-specific antibodies were detected in 9.2% (22/240) of examined sheep and 4.6% (11/240) of examined cattle by ELISA, while lower serological positivity with 4.2% (10/240) for sheep and 1.7% (4/240) for cattle was confirmed by VNT. In contrast, the prevalence of ALSV RNA was much higher, ranging from 26.3% (63/240) in sheep to 27.5% (66/240) in cattle. The partial S1 (NS5-like) and S3 (NS3-like) segments of ALSVs in sheep and cattle shared high identities of more than 98% to the human and tick isolates in the studied regions.

Conclusions: These results suggest that the natural infection of ALSV can be found in sheep and cattle in the endemic regions.

Keywords: Alongshan virus; Enzyme-linked immunosorbent assay; Northeastern China; Quantitative real-time RT-PCR; Viral neutralizing antibodies.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Sampling locations of sheep and cattle for the present survey in Hulunbuir, northeastern Inner Mongolia of China. Green shadowed areas indicate the sampling locations. Abbreviations: CBQ, Chen Barag Qi; XBZ, Xin Barag Zuoqi; XBY, Xin Barag Youqi
Fig. 2
Fig. 2
Phylogenetic analysis of partial segment S3 (a, NS3-like) and S1 (b, NS5-like) from isolated ALSVs from patients, ticks, cattle, sheep and other Jingmenviruses. Sequences are identified by their GenBank accession numbers, followed by the virus name, strain and country. All of the Jingmenviruses are also labeled with the isolate source with silhouette picture. The scale-bars in each panel indicate 0.05 substitutions per site. Abbreviations: ALSV, Alongshan virus; JMTV, Jingmen tick virus; MGTV, Mogiana tick virus; YGTV, Yanggou tick virus

References

    1. Wang ZD, Wang B, Wei F, Han SZ, Li ZY, Yang ZT, et al. A new segmented virus associated with human febrile illness in China. N Engl J Med. 2019;380:2116–2125. doi: 10.1056/NEJMoa1805068. - DOI - PubMed
    1. Kuivanen S, Levanov L, Kareinen L, Sironen T, Jääskeläinen AJ, Plyusnin I, et al. Detection of novel tick-borne pathogen, Alongshan virus, in Ixodes ricinus ticks, south-eastern Finland, 2019. Euro Surveill. 2019 doi: 10.2807/1560-7917.es.2019.24.27.1900394. - DOI - PMC - PubMed
    1. Villa EC, Maruyama SR, de Miranda-Santos IKF, Palacios G, Ladner JT. Complete coding genome sequence for Mogiana tick virus, a jingmen virus isolated from ticks in Brazil. Genome Announc. 2017;5:e00232–e00317. doi: 10.1128/genomeA.00232-17. - DOI - PMC - PubMed
    1. Ladner JT, Wiley MR, Beitzel B, Auguste AJ, Dupuis AP, 2nd, Lindquist ME, et al. A multicomponent animal virus isolated from mosquitoes. Cell Host Microbe. 2016;20:357–367. doi: 10.1016/j.chom.2016.07.011. - DOI - PMC - PubMed
    1. Qin XC, Shi M, Tian JH, Lin XD, Gao DY, He JR, et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc Natl Acad Sci USA. 2014;111:6744–6749. doi: 10.1073/pnas.1324194111. - DOI - PMC - PubMed

MeSH terms